Skip to main content

Interpolation and Related Coarsening Techniques for the Algebraic Multigrid Method

  • Chapter
Book cover Multigrid Methods IV

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 116))

Abstract

Let A be a symmetric and positive definite matrix and bR r. We consider the system

$$Au = b$$

with the (unique) exact solution uR r. For q ≥ 2 let C 1, C2, …, C q be a sequence of nonvoid subsets of {1,..., r} such that

$$\left\{ {1, \cdots ,r} \right\} = {C_1} \supset {C_2} \supset \cdots \supset {C_q}$$
$$\left| {{C_m}} \right| = {n_{m,}}m = 1, \cdots ,q$$
$$r = {n_1} > {n_2} > \cdots > {n_q} \ge 1$$

where by |C m | we denoted the number of elements in the set C m . Furthermore, for m = 1, 2,..., q − 1 we consider the matrices A 1A and A m+1 and the linear operators

$$I_{m + 1}^m:{R^{{n_{m + 1}}}} \to {R^{{n_m}}},I_m^{m + 1}:{R^{{n_m}}} \to {R^{{n_{m + 1}}}}$$

with the properties: I m m+1 has full rank,

$$I_m^{m + 1} = {(I_{m + 1}^m)^t}$$
$${A^{m + 1}} = I_m^{m + 1}{A^m}I_{m + 1}^m$$

We also define the coarse grid correction operators T m by

$${T^m} = {I_m} - I_{m + 1}^m{({A^{m + 1}})^{ - 1}}I_m^{m + 1}{A^m}$$

and the smoothing process

$$u_{new}^m = {G^m}u_{old}^m + \left( {{I_m} - {G^m}} \right){\left( {{A^m}} \right)^{ - 1}}{b^m}$$

where I m is the identity and

$${A^m}{u^m} = {b^m}$$

are the systems corresponding to the coarse levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, O., Vassilevski, P.S. Algebraic multilevel preconditioning methods. Part I: Numer. Math., 56, 157–177 (1989); Part II: SIAM J. Numer. Anal., 27, no. 6, 1569–1590 (1990); Part III: Report 9045, Dept. of Math., Catholic Univ. Nijmegen (1990).

    Article  MathSciNet  MATH  Google Scholar 

  2. Axelsson, O., Neytcheva, M. Algebraic multilevel iteration method for Stieltjes matrices. Report 9102, Dept. of Math., Catholic Univ. Nijmegen (1991).

    Google Scholar 

  3. Brandt, A. Algebraic multigrid theory: the symmetric case. Preprint, Weizmann Inst, of Science, Rehovot (1983).

    Google Scholar 

  4. Brandt, A., Ta’assan, S. Multigrid method for nearly singular and slightly indefinite problems. In “Multigrid methods II”, ed. W. Hackbusch and U. Trottenberg, Lecture Notes in Math., vol. 1228, Springer Verlag, Berlin (1986).

    Google Scholar 

  5. Hackbusch, W. Multigrid methods and applications. Springer Verlag, Berlin (1985).

    Google Scholar 

  6. Meijerink, J.A., van Der Vorst, H.A. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math, of Comput., 31 (1977) 148–162.

    MATH  Google Scholar 

  7. Popa, C. ILU decomposition for coarse grid correction step on algebraic multigrid. Paper presented at the 3rd European Conference on Multigrid Methods, Bonn, 1990. In GMD-Studien, nr. 189, 1991.

    Google Scholar 

  8. Popa, C. On smoothing properties of SOR relaxation for algebraic multigrid method. (Studii si Cerc. Mat., Ed. Academiei Române, 5 (1989) 399–406.

    Google Scholar 

  9. Popa, C. Preconditioning for the fulfillment of the approximation assumption in the algebraic multigrid method (unpublished paper, presented as an internal communication at Institut für Informatik und Praktische Mathematik, Univ. of Kiel, January 1993).

    Google Scholar 

  10. Popa, C. Coarsening algorithms for the algebraic multigrid method (as [9]).

    Google Scholar 

  11. Ruge, J., Stuben, K. Algebraic multigrid. In “Multigrid methods”, S. Mc-Cormick ed., SIAM, Philadelphia, 1987.

    Google Scholar 

  12. Yserentant, H. Hierarchical bases of finite-element spaces in the discretization of nonsymmetric elliptic boundary value problems. Computing, 35 (1985) 39–49.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Golubovici, G., Popa, C. (1994). Interpolation and Related Coarsening Techniques for the Algebraic Multigrid Method. In: Hemker, P.W., Wesseling, P. (eds) Multigrid Methods IV. ISNM International Series of Numerical Mathematics, vol 116. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8524-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8524-9_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9664-1

  • Online ISBN: 978-3-0348-8524-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics