Optimal sampling strategies for core collections of plant genetic resources

  • A. H. D. Brown
  • D. J. Schoen
Part of the EXS book series (EXS, volume 68)

Summary

A core collection of crop germplasm aims to represent the genetic diversity in a single collection or in a crop species with minimum similarity between its entries. Core collections have a major role to play in conserving genetic resources and using them in plant improvement. Core selection can be based on stratified sampling from groups of related accessions. Elementary neutral theory indicates that the relative number from each group should be proportional to its level of polymorphism. This procedure has some biases when alleles are finite in number, or heterotic, or deleterious. However, in general, the weighting strategy is in practice robust to these departures from the assumptions underlying theory. Variation in divergence among populations is a factor that merits attention. In general, weighting in conservation should include both elements of richness and degree of divergence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, A. H. D. (1989a) The case for core collections. In: Brown, A. H. D., Frankel, O. H., Marshall, D. R. and Williams, J. T. (eds), The use of plant genetic resources. Cambridge University Press, Cambridge, pp. 136–156.Google Scholar
  2. Brown, A. H. D. (1989b) Core collections: A practical approach to genetic resources management. Genome 31: 818–824.CrossRefGoogle Scholar
  3. Brown, A. H. D. (1992) Human impact on plant gene pools. Oikos 63: 109–118.CrossRefGoogle Scholar
  4. Brown, A. H. D. (1993) The core collection at the crossroads. In: Hodgkin, T., Brown, A. H. D., van Hintum, T. J. L. and Morales, E. A. V. (eds), Core collections of plant genetic resources. John Wiley and Sons Ltd., Chichester.Google Scholar
  5. Brown, A. H. D. and Briggs, J. D. (1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk, D. A. and Holsinger K. E. (eds), Genetics and conservation of rare plants. Oxford University Press, Oxford, pp. 99–119.Google Scholar
  6. Clayton G. and Robertson, A. (1955) Mutation and quantitative variation. Amer. Nat. 89: 151–158.CrossRefGoogle Scholar
  7. Crozier, R. H. (1992) Genetic diversity and the agony of choice. Biol. Conserv. 61: 11–15.CrossRefGoogle Scholar
  8. Doebley, J. F., Goodman, M. M. and Stuber, C. W. (1984) Isoenzymatic variation in Zea (Gramineae). Syst. Bot. 9: 203–218.CrossRefGoogle Scholar
  9. Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3: 87–112.CrossRefGoogle Scholar
  10. Faith, D. P. (1992) Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 1–10.CrossRefGoogle Scholar
  11. Frankel, O. H. (1984) Genetic perspectives of germplasm conservation. In: Arber, W., Llimensee, K., Peacock, W. J. and Starlinger, P. (eds), Genetic manipulation: Impact on man and society. Cambridge University Press, Cambridge, pp. 161–170.Google Scholar
  12. Frankel, O. H. and Brown, A. H. D. (1984) Plant genetic resources today: a critical appraisal. In: Holden, J. H. W. and Williams, J. T. (eds), Crop genetic resources: Conservation and evaluation. George Allen & Unwin Ltd., London, pp. 249–257.Google Scholar
  13. Frankel, O. H. and Soulé, M. E. (1981) Conservation and Evolution. Cambridge University Press, Cambridge.Google Scholar
  14. Hamrick, J. L., Linhart, Y. B. and Mitton, J. B. (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu. Rev. Ecol. Syst. 10: 173–200.CrossRefGoogle Scholar
  15. Holden, J. H. W. (1984) The second ten years. In: Holden, J. H. W. and Williams, J. T. (eds), Crop genetic resources: Conservation and evaluation. George Allen & Unwin Ltd., London, pp. 277–285.Google Scholar
  16. Kimura, M. and Crow, J. F. (1964) The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.PubMedGoogle Scholar
  17. MacArthur, R. H. and Wilson, E. O. (1967) The theory of island biogeography. Princeton University Press, Princeton, N.J.Google Scholar
  18. Marshall, D. R. and Brown, A. H. D. (1975) Optimum sampling strategies in genetic conservation. In: Frankel, O. H. and Hawkes, J. G. (eds), Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp. 53–80.Google Scholar
  19. Morden, C. W., Doebley, J. R. and Schertz, K. F. (1990) Allozyme variation among the spontaneous species of Sorghum section Sorghum (Poaceae). Theor. Appl. Genet. 80: 296–304.CrossRefGoogle Scholar
  20. Nevo, E., Zohary, D., Brown, A. H. D. and Haber, M. (1979) Genetic diversity and environmental asociations of wild barley, Hordeum spontaneum , in Israel. Evolution 33: 815–833.Google Scholar
  21. Plucknett, D. L., Smith, N. J. H., Williams, J. T. and Murthi Anishetty, N. (1987) Gene banks and the world’s food. Princeton University Press, Princeton, N.J.Google Scholar
  22. Schoen, D. J. and Brown, A. H. D. (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc. Natl. Acad. Sci. USA 90: 10623–10627.PubMedCrossRefGoogle Scholar
  23. Slatkin, M. (1985) Rare alleles as indicators of gene flow. Evolution 39: 53–65.CrossRefGoogle Scholar
  24. Vane-Wright, R. I., Humphries, C. J. and Williams, P. H. (1991) What to protect?-Systematics and the agony of choice. Biol. Conserv. 55: 235–254.CrossRefGoogle Scholar
  25. Wilson, E. O. (1988) Biodiversity. National Academic Press, Washington DC.Google Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • A. H. D. Brown
    • 1
  • D. J. Schoen
    • 2
  1. 1.Division of Plant IndustryCSIROCanberraAustralia
  2. 2.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations