Skip to main content

Rare alleles, MHC and captive breeding

  • Chapter

Part of the book series: EXS ((EXS,volume 68))

Summary

In recent years, more detailed genetic information has become available for individuals of endangered species in captive breeding programs. There have been suggestions that this information be used to identify rare alleles, particularly those at the MHC, that can be subsequently selected for captive breeding programs. First, we summarize the current information on the MHC relevant to conservation genetics, so that such a possible breeding program is seen in a proper perspective. For example, very few specific alleles at the MHC have been identified as selectively advantageous, even though there has been substantial effort to find such alleles in humans and a few other organisms. Further, many of the balancing selection models suggested for MHC variation are based on heterozygotes in general having a higher fitness than homozygotes and not on specific selectively advantageous alleles.

Because there is no detailed data on MHC variability in captive populations, we used transferrin data in Przewalski’s horses to evaluate a breeding program to select for rare alleles. In this species, one individual, 1060, has been identified to have the transferrin allele J. We determine the effect on founder contribution of multiply mating 1060 to increase the number of copies of this allele. Since there were 485 individuals in the population at this time, this extra mating had little detrimental effect on the distribution of founder contributions and the number of founder equivalents. We then selected 65, an ancestor of 1060, which had a high likelihood of being the individual that passed on the J allele in the lineage of 1060. We examined the effect of increasing the number of copies of alleles of 65 at a time when the population had only 22 other individuals. In this case, even though the founder contributions were changed more, there was also little effect on the founder contributions and the number of founder equivalents. Overall, it appears that selection that results in a limited change in the number of copies of rare alleles may not always have an overall detrimental effect. However, because other pedigrees may have very different properties, it is essential to perform a detailed pedigree analysis of any such selective breeding program to determine its effect before such a selection program is implemented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf, F. W. (1986) Geneticdrift and the loss of alleles versus heterozygosity. Zoo Biol.5: 181–190.

    Article  Google Scholar 

  • Ballou, J. D. (1983) Calculating inbreedingcoefficients from pedigrees. In: Schoenwald-Cox, C. M., Chambers,S. M., MacBryde, F. and Thomas, L. (eds), Genetics and conservation: Areference for managing wild animal and plant populations. Benjamin/Cummins, Menlo Park, CA, pp. 509–520.

    Google Scholar 

  • Bjorkman, P. J., Saper, M. A., Samraoui, B.,Bennett, W. S., Strominger, J. L. and Wiley, D. C. (1987) The foreign antigenbinding site and T cell recognition regions of class I histocompatibilityantigens. Nature 329: 512–518.

    Article  PubMed  CAS  Google Scholar 

  • Black, F. L. (1992) Why did they die? Science 258:1739–1741.

    Article  PubMed  CAS  Google Scholar 

  • Black, F. L. and Salzano, F. M. (1981) Evidence for heterosis in the HLAsystem. Amer. J.Hum.Genet. 33:894–899.

    PubMed  CAS  Google Scholar 

  • Bodmer, W. (1972) Evolutionary significance of theHL-A system. Nature 237: 139- 145.

    Article  PubMed  Google Scholar 

  • Bodmer, J. G., Marsh, S. G. E., Albert, E. D.,Bodmer, W. F.,Dupont,B., Erlich, E. R.,Mach,B.,Mayr, W. R., Parham, P., Sasauzuki, T., Schreuder, G. M., Strominger, J. L., Svejgaard, A. andTerasaki, P. I. (1992) Nomenclature for factors of the HLA system, 1991. Tissue Antigens 39: 161–173.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, L. andHoupt, K. (1994) Przewalski’s horses: The History and biology of anendangeredspecies.SUNYPress, Albany, NY.

    Google Scholar 

  • Briles, W. E., Stone, H. A. and Cole, R. K. (1977)Marek’s disease: Effects of B histocompatibility alloalleles in resistant andsusceptible chicken lines. Science 195: 193–195.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. H., Jardetsky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G.,Strominger, J. L. andWiley,D. C. (1993) Three-dimensional structure of the human class IIhistocompatibilityantigenHLA-DR1. Nature 364: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Darlington, C. D. and Mather, K. (1949) TheElements of Genetics. Allen and Unwin, London.

    Google Scholar 

  • Egid, K. and Brown, J. L. (1989) The majorhistocompatibility complex and female mating preferences in mice. Anim. Behav. 38:548–550.

    Article  Google Scholar 

  • Ellegren, H., Hartman, G., Johansson, M.and Andersson, L. (1993) A rapidly expanding population of beavers is virtuallymonomorphic at MHC and DNA fingerprinting loci. Proc. Nat. Acad. Sci. USA 90:8150–8153.

    Article  PubMed  CAS  Google Scholar 

  • Evermann, J. F., Heeney, J. L., Roelke, M. E.,McKeirnan, A. J. and O’Brien, S. J. (1988) Biological and pathological consequencesof feline infectious peritonitis virus infection in the cheetah. Arch.Virol. 102: 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Fuerst, P. A. and Maruyama, T. (1986) Considerationson the conservation of alleles and of genic heterozygosity in small managedpopulations. Zoo Biol. 5: 171–179.

    Article  Google Scholar 

  • Gavora, J. S., Simenson, M., Spencer, J. L.,Fairfull, R. W. and Gowe, R. S. (1986) Changes in thefrequency of major histocompatibility haplotypes in chickens under selectionfor bothhighegg production and resistance to Marek’s disease. J. Anim. Breed. Genet. 103:218–226.

    Article  Google Scholar 

  • Geyer, C. J., Ryder, O. A., Chemick, L.G. and Thompson, E. A. (1993) Analysis of relatedness in the California condorsfrom DNAfingerprints.Mol.Biol.Evol. 10: 571–589.

    CAS  Google Scholar 

  • Geyer, C. J. and Thompson, E. A. (1988)Gene survival in the Asian wild horse (Equusprzewalskii): I. Dependence ofgene survival in the Calgary breeding group. Zoo Biol. 7: 313–327.

    Article  Google Scholar 

  • Geyer, C. J., Thompson, E. A. and Ryder,O. A. (1989) Gene survival in the Asian wild horse (Equusprzewalskii): II.Gene survival in the whole population, in subgroups, and through history. ZooBiol. 8: 313–329.

    Google Scholar 

  • Gilpin, M. and Wills, C. (1991) MHC and captivebreeding: A rebuttal. Cons. Biol. 5:554–555.

    Article  Google Scholar 

  • Grey, H. M., Sette, A. and Buus, S. (1989) How Tcells see antigen. Sci. Amer. (November), 56–64.

    Google Scholar 

  • Haig, S. M., Ballou, J. D. and Derrickson, S. R.(1989) Management options for preserving genetic diversity: Reintroduction ofGuam rails to the wild. Cons. Biol. 4: 290–300.

    Article  Google Scholar 

  • Hedrick, P. W. (1992) Female choice and variation inthe major histocompatibility complex. Genetics 132: 575–581.

    PubMed  CAS  Google Scholar 

  • Hedrick, P. W., Brussard, P. F., Allendorf, F.W.,Beardmore, J. A. and Orzack, S. (1986) Protein variation, fitness and captivepropagation. Zoo Biol. 5: 91–99.

    Article  Google Scholar 

  • Hedrick, P. W., Jain, S. K. and Holden, L. (1978)Multilocus systems in evolution. Evol. Biol.11: 101–184.

    Google Scholar 

  • Hedrick, P. W., Klitz, W., Robinson, W. P., Kuhner, M. K. andThomson, G. (1991)Evolutionaryhistories of HLA. In: R. K. Clark, A. G. and Whittam, T. S. (eds), Evolutionat the molecularlevel. Sinauer,Sunderland, MA, pp. 248–271.

    Google Scholar 

  • Hedrick, P. W. and Markow, T. (1994) High amino acidheterozygosity for HLA genes in an isolated group, the HavasupaiManuscript.

    Google Scholar 

  • Hedrick, P. W. and Miller, P. S. (1992) Conservationgenetics: Techniques and fundamentals. Ecol. Appl. 2: 30–46.

    Article  Google Scholar 

  • Hedrick, P. W. and Thomson, G. (1983) Evidence forbalancing selection at HLA. Genetics104: 449–456.

    PubMed  CAS  Google Scholar 

  • Hedrick, P. W., Thomson, G. and Klitz, W. (1987)Evolutionary genetics and HLA: Another classic example. Biol. J. Lin. Soc. 31:311–331.

    Article  Google Scholar 

  • Hedrick, P. W., Whittam, T. S. and Parham, P. (1991)Heterozygosity at individual amino acid sites: Extremely high levels for HLA-Aand -B genes. Proc. Nat. Acad. Sci. USA 88: 5897–5901.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. V. S. (1991) HLA associations with malariain Africa: some implications for MHC evolution. In: Klein, J. andKlein, D. (eds), Molecular evolution of the major histocompatibilitycomplex. Springer-Verlag, New York, pp. 403–420.

    Chapter  Google Scholar 

  • Hill, A. V. S.,Allsop, C. E. M., Kwiatkowski, D., Antsley, N. M., Twumasi, P., Rowe, P. A., Bennet,S., Brewster,D.,McMichel,A. J. and Greenwood, B. M. (1991) Common west African HLA antigens areassociated with protection from severe malaria. Nature 352: 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. (1991) MHC polymorphism and the design ofcaptive breeding programs. Cons.Biol. 5: 249–251.

    Article  Google Scholar 

  • Klein, J. and Klein, D. (1991) Molecularevolution of the major histocompatibility complex.Springer-Verlag, New York.

    Book  Google Scholar 

  • Klitz, W., Thomson, G. and Baur, M. P. (1986)Contrasting evolutionary histories among tightly linked HLA loci. Amer. J.Hum. Genet. 39: 340–349.

    PubMed  CAS  Google Scholar 

  • Lacy, R. C. (1989) Analysis of founderrepresentation in pedigrees: founder equivalents and founder genomeequivalents. Zoo Biol. 8: 111–123.

    Article  Google Scholar 

  • Markow, T., Hedrick, P. W., Zuerlein, K., Danilovs,J., Martin, J., Vyvial, T. and Armstrong, C. (1993) HLA polymorphism in theHavasupai: Evidence for balancing selection. Amer. J.Hum. Genet. 53: 943–952.

    PubMed  CAS  Google Scholar 

  • Miller, P. S. and Hedrick, P. W. (1991) MHCpolymorphism and the design of captive breeding programs: Simple solutions arenot the answer. Cons. Biol. 5: 556–558.

    Article  Google Scholar 

  • Miller, P. S. and Hedrick, P. W. (1993) Selectivebreeding for rare alleles in pedigreed populations, (in preparation).

    Google Scholar 

  • Nei, M. and Hughes, A. L. (1991) Polymorphism andevolution of the major histocompatibility complex in mammals. In: Selander,R. K., Clark, A. G. and Whittam, T. S. (eds), Evolution at theMolecular Level. Sinauer,Sunderland, MA, pp. 222–247.

    Google Scholar 

  • O’Brien, S. J. and Evermann, J. F. (1988)Interactive influence of infectious disease and genetic diversity in naturalpopulations. Trends Ecol. Evol. 3: 254–259.

    Article  PubMed  Google Scholar 

  • Parham, P., Lomen, C. E., Lawlor, D. A., Ways, J.P., Holmes, N., Coppin, H. L., Salter, R. D., Wan, A. M. and Ennis, P. D. (1988)Nature of polymorphism in HLA-A, -B, and -C molecules. Proc. Nat. Acad. Sci. USA 85:4005–4009.

    Article  PubMed  CAS  Google Scholar 

  • Potts, W. K., Manning, C. J. and Wakeland, E. K.(1991) Mating patterns in seminatural populations ofmice influenced by MHC genotypes. Nature 352: 619–621.

    Article  PubMed  CAS  Google Scholar 

  • Ralls, K. and Ballou, J. D. (1986) Proceedings ofthe workshop on genetic management of captive populations. Zoo Biol. 5:81–238.

    Article  Google Scholar 

  • Schreiber, A. and Tichy, H.(1992) MHC polymorphisms and the conservation of endangered species. Symp.Zool. Soc. Lond. 64: 103–121.

    Google Scholar 

  • Slade, R. W. (1992) Limited MHC polymorphism in thesouthern elephant seal: Implications for MHC evolution and marine mammalpopulation biology. Proc. Roy. Soc. Lond. B 249: 163–171.

    Article  CAS  Google Scholar 

  • Templeton, A. R., Davis, S. K. and Read, B. (1987)Genetic variability in a captive herd of Speke’s gazelle (Gazella spekei). ZooBiol. 6: 305–313.

    Google Scholar 

  • Thomas, A. (1987) Pedpack: User’s manual.Technical Report 99, Dept. Statistics, Univ. Washington, Seattle, WA.

    Google Scholar 

  • Thomas, M. L., Harger, J. H., Wagener, D. K., Rabin, B.S. and Gill, T. J. (1985) HLA sharing and spontaneous abortion in humans. Amer.J. Obstrec. Gynecol. 151: 1053–1058.

    CAS  Google Scholar 

  • Thomson, G. (1988) HLA disease associations: Modelsfor insulin dependent diabetes mellitus and the study ofcomplex human genetic disorders. Annu. Rev. Genet. 22: 31–50.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, J. L. and Terasaki, T. I. (1985) HLA anddisease associations. Springer-Verlag, New York.

    Book  Google Scholar 

  • Trowsdale, J. (1993) Genomic structure and functionin the MHC. Trends Genet. 9: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale, J., Groves, V. and Arnason, U. (1989) Limited MHC polymorphism inwhales.Immunogenetics29:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale, J., Ragoussis, J. and Campbell, R. D.(1991) Map of the human major histocompatibility complex. Immunol. Today 12:443–446.

    Article  PubMed  CAS  Google Scholar 

  • Van Eden, W., Devries, R. R. P. and Van Rood, J. J. (1983) The genetic approachto infectiousdisease with special emphasis on the MHC. Dis. Markers 1: 221–242.

    Google Scholar 

  • Vrijenhoek, R. C. and Leberg, P. L. (1991) Let’s notthrow the baby out with the bathwater: A comment on management for MHCdiversity in captive populations. Cons. Biol. 5:252–254.

    Article  Google Scholar 

  • Wakelin, D. and Blackwell, J. M. (1988) Geneticsof resistance to bacterial and parasiticinfection. Taylor andFrancis, London.

    Google Scholar 

  • Watkins,D. I.,Hodi,F. S. and Letvin, N. L. (1988)A primate species with limited major histocompatibility complex class Ipolymorphism. Proc. Nat. Acad. Sci. USA 85: 7714– 7718.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, K., Beauchamp, G. K. and Kupniewski, D. (1988)Familial imprinting determines H-2 selective mating preferences. Science 240:1331–1332.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, K., Boyse, E. A., Mike, V., Thaler, H. T.,Matheison, B. J., Abbott, J., Boyse, J., Zayas, Z. A. and Thomas, L. (1976)Control of mating preferences in mice by genes in the majorhistocompatibility complex. J. Expt. Med. 144: 1324–1335.

    Article  CAS  Google Scholar 

  • Yamazaki, K., Yamaguchi, M., Andrews, P. W., Peake,B. and Boyse, E. A. (1978) Mating preferences of F2 segregantsof crosses between MHC-congenic mouse strains. Immuno-genetics 6: 253–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Hedrick, P.W., Miller, P.S. (1994). Rare alleles, MHC and captive breeding. In: Loeschcke, V., Jain, S.K., Tomiuk, J. (eds) Conservation Genetics. EXS, vol 68. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8510-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8510-2_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9657-3

  • Online ISBN: 978-3-0348-8510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics