Advertisement

Connexions linéaires, classes de Chern, théorème de Riemann-Roch

  • Paul Gauduchon
Chapter
Part of the Progress in Mathematics book series (PM, volume 117)

Résumé

Ce chapitre se divise en trois parties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [B-P-V]
    W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, Ergebnisse der Math. 3 Folge, Band 4, Springer-Verlag, 1984.Google Scholar
  2. [Bo-Hi]
    A. Borel, F. Hirzebruch, Characteristic classes and homogeneous spaces II, Am. J. Math. 81 (1959), 97–136.MathSciNetCrossRefGoogle Scholar
  3. [Bot]
    R. Bott, Lectures on K(X), W. A. Benjamin, Inc, 1969.Google Scholar
  4. [Bo-Tu]
    R. Bott, L. W. Tu., Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer-Verlag, 1982.Google Scholar
  5. [Che]
    S.S. Chern, Complex manifolds without potential theory (second edition), Universitext, Springer-Verlag, 1979.Google Scholar
  6. [Gr-Ha]
    P. Griffiths, J. Harris, Principles of algebraic geometry, Intersciences Publication, Wiley, 1978.zbMATHGoogle Scholar
  7. [Gun1]
    R.C. Gunning, Lectures on Riemann surfaces, Mathematical Notes, Princeton, 1966.Google Scholar
  8. [Gun2]
    R.C. Gunning, Lectures on vector bundles over Riemann surfaces, Mathematical Notes, Princeton, 1967.Google Scholar
  9. [God]
    R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, 1964.Google Scholar
  10. [Hir]
    F. Hirzebruch, Topological methods in algebraic geometry (third edition), die Grundlehren der math. Wissenschaften in Einz. 131, Springer-Verlag, 1966.Google Scholar
  11. [Kod]
    K. Kodaira, On the structure of compact complex analytic surfaces, Amer. J. Math 86 (1964), 751–798.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Ko-Mo]
    K. Kodaira, J. Morrow, Complex manifolds, Rinehart and Winston, 1971.Google Scholar
  13. [Mi-St]
    J.W. Milnor, J.D. Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton, 1974.Google Scholar
  14. [Sch]
    R.L.E. Schwarzenberger, In [Hir] Appendix One.Google Scholar
  15. [Ste]
    N. Steenrod, The topology of fibre bundles, Mathematical Series 14, Princeton, 1951.Google Scholar
  16. [Hus]
    D. Husemoller, Fibre bundles (second edition), Graduate Texts in Mathematics 20, Springer-Verlag, 1966.Google Scholar
  17. [Wei]
    A. Weil, Variétés kählériennes, Hermann, 1958.Google Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Paul Gauduchon

There are no affiliations available

Personalised recommendations