Some relevant Riemannian geometry

  • Jacques Lafontaine
Part of the Progress in Mathematics book series (PM, volume 117)


The first two sections of this chapter are an introduction to Riemannian geometry. It is not self-contained, and precise references are provided when necessary. However, we chosed to give some proofs which have a metric flavour.


Vector Field Riemannian Manifold Vector Bundle Fundamental Form Hyperbolic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. I. Arnold, Singularities of systems of rays, Russian Math. Surveys 38 (1983), 87–176.CrossRefGoogle Scholar
  2. [2]
    E. Beckenbach, T. Rado, Subharmonic functions and surfaces of negative curvature, Trans. Amer. Math. Soc. 35 (1933), 662–674.MathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Bennequin, Problèmes elliptiques, surfaces de Riemann et structures sym-plectiques, in Séminaire Bourhaki, Astérisque 145–146 (1987), 111–136.MathSciNetGoogle Scholar
  4. [4]
    F. Bernstein, Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläsche und in der Ebene, Math. Ann. 60 (1905), 117–136.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Besse, Manifolds, all of whose geodesics are closed, Springer, 1975.Google Scholar
  6. [6]
    G. Bol, Isoperimetrisch Ungleichungen für Bereiche auf Flächen, Jahresbericht d. Deutschen Mathem. Vereinigung 3 (1951), 219–257.Google Scholar
  7. [7]
    Y. Burago, V. Zallgaller, Geometric Inequalities, Springer, 1988 (for the English translation).Google Scholar
  8. [8]
    J. Cheeger, D. Ebin, Comparison theorems in Riemannian Geometry, North-Holland, 1975.Google Scholar
  9. [9]
    M. DoCarmo, Riemannian Geometry, Birkhaüser, 1990.Google Scholar
  10. [10]
    H.M. Farkas, I. Kra, Riemann Surfaces, Springer, 1992 (second edition).Google Scholar
  11. [11]
    J. Duval, Compacité des J-courbes, le cas simple des J-droites d’un pseudoplan, preprint (1987).Google Scholar
  12. [12]
    F. Fiala, Le problème des isopérimétres sur les surfaces ouvertes à courbure positive, Comment. Math. Helv. 13 (1940–41), 293–345.MathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer, 1990 (second edition).Google Scholar
  14. [14]
    M. Gromov, J. Lafontaine, P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic-Nathan, diffusé par la Société Mathématique de France, 1981.Google Scholar
  15. [15]
    W. Klingenberg, Riemannian Geometry, deGruyter, 1982.Google Scholar
  16. [16]
    B. Lawson, Minimal manifolds in real and complex Geometry, Séminaire de Mathématiques Supérieures de Montréal, 1973.Google Scholar
  17. [17]
    J. Milnor, Morse theory, Princeton University Press, 1963.Google Scholar
  18. [18]
    R. Ossermann, The isoperimetric inequality, Bull. of Amer. Math. Soc. 84 (1979), 1182–1238.CrossRefGoogle Scholar
  19. [19]
    Séminaire Orsay, Travaux de Thurston sur les surfaces, Astérisque 66–67 (1979).Google Scholar
  20. [20]
    Séminaire Palaiseau, Théorie des variétés minimales et applications, Astérisque 154–155 (1987).Google Scholar
  21. [21]
    S. Peters, Cheeger’s fineteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Math. 349 (1988), 77–82.Google Scholar
  22. [22]
    E. Schmidt, Über die isoperimetrische Aufgabe im n-dimensionalen Raum konstanter negativer Krümmung, Math. Z. 46 (1940), 204–230.MathSciNetCrossRefGoogle Scholar
  23. [23]
    J. Wolfson, Gromov’s compactness of pseudo-holomorphic curves and Symplectic Geometry, J. of Diff. Geom. (1988), 383–405.Google Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Jacques Lafontaine

There are no affiliations available

Personalised recommendations