Symplectic and almost complex manifolds

  • Michèle Audin
Part of the Progress in Mathematics book series (PM, volume 117)


The aim of this chapter is to introduce the basic problems and (soft!) techniques in symplectic geometry by presenting examples—more exactly series of examples— of almost complex and symplectic manifolds: it is obviously easier to understand the classification of symplectic ruled surfaces if you have already heard of Hirzebruch surfaces for instance.


Complex Manifold Symplectic Form Symplectic Manifold Symplectic Structure Complex Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Springer, 1978.Google Scholar
  2. [2]
    M. Atiyah, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. 7 (1957), 414–452.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Audin, Hamiltoniens périodiques sur les variétés symplectiques compactes de dimension 4, in Géométrie Symplectique et mécanique, Springer Lecture Notes in Math. 1416 (1990).Google Scholar
  4. [4]
    M. Audin, The topology of torus actions on symplectic manifolds, Progress in Math. 93, Birkhäuser, 1991.Google Scholar
  5. [5]
    M. Audin, Exemples de variétés presque complexes, l’Ens. Math. 37 (1991), 175–190.MathSciNetzbMATHGoogle Scholar
  6. [6]
    D. Bennequin, Caustique mystique, in Séminaire Bourbaki, Astérisque 133–134 (1986).Google Scholar
  7. [7]
    D. Bennequin, Topologie symplectique, convexité holomorphe et structures de contact, in Séminaire Bourbaki, Astérisque 189–190 (1990).Google Scholar
  8. [8]
    T. Delzant, Hamiltoniens périodiques et image convexe de l’application moment, Bull. Soc. Math. France 116 (1988), 315–339.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J. Duistermaat, G. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259–269.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R.E. Gompf, preprint (1992).Google Scholar
  11. [11]
    P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley-Inter-science, 1978.Google Scholar
  12. [12]
    M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Gromov, Partial differential relations, Ergebnisse der Math., Springer, 1986.Google Scholar
  14. [14]
    A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    F. Hirzebruch, DeUber eine Klasse von einfach-zusammenhäng enden komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951), 77–86.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Jaffe, F. Quinn, “Theoretical mathematics”: Towards a cultural synthesis of mathematics and theoretical physics, Bull. Amer. Math. Soc. 29 (1993), 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Lafontaine, Surfaces de Hirzebruch, in Géométrie riemannienne en dimension 4, Séminaire Arthur Besse, Cedic, Paris (1981).Google Scholar
  18. [18]
    M. Karoubi, K-theory, an introduction, Grundlehren der math. Wissenschaften, Springer, 1978.Google Scholar
  19. [19]
    A.A. Kirillov, Elements of the theory of representations, Grundlehren der math. Wissenschaften, Springer, 1976.Google Scholar
  20. [20]
    S. Kobayashi, K. Nomizu, Differential Geometry, vol. 2, Interscience Publishers, 1969.Google Scholar
  21. [21]
    P. Libermann, C.-M. Marle, Symplectic geometry and analytic mechanics, Math. and its Appl. 35, Reidei, 1987.Google Scholar
  22. [22]
    A. Lichnerowicz, Théorie globale des connexions et des groupes d’holonomie, Edizioni Cremonese, Roma, 1955.Google Scholar
  23. [23]
    J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Reports in Math. Phys. 5 (1974), 121–130.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. McDuff, Examples of simply-connected symplectic non-Kähler manifolds, J. Differ. Geom. 20 (1984), 267–277.MathSciNetzbMATHGoogle Scholar
  25. [25]
    D. McDuff, Blowing up and symplectic embeddings in dimension 4, Topology 30 (1991), 409–421.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. McDuff, The structure of rational and ruled symplectic manifolds, Journal of the Amer. Math. Soc. 3 (1990), 679–712.MathSciNetzbMATHGoogle Scholar
  27. [27]
    A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391–404.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Spivak, Differential Geometry, vol. 4, Publish or Perish, 1975.Google Scholar
  29. [29]
    A. Weinstein, Lectures on symplectic manifolds, Regional Conference Series in mathematics, 1977.Google Scholar
  30. [30]
    A. Weinstein, On the hypotheses of the Rabinowitz periodic orbit theorems, Journal of Diff. Equations 33 (1979), 353–358.CrossRefzbMATHGoogle Scholar
  31. [31]
    Wu W.T., Sur les classes caractéristiques des structures fibrées sphériques, Actualités scientifiques et industrielles, Hermann, Paris, 1952.Google Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Michèle Audin

There are no affiliations available

Personalised recommendations