Advertisement

Symplectic rigidity: Lagrangian submanifolds

  • Michèle Audin
  • François Lalonde
  • Leonid Polterovich
Chapter
Part of the Progress in Mathematics book series (PM, volume 117)

Abstract

This chapter is supposed to be a summary of what is known today about Lagrangian embeddings. We emphasise the difference between flexibility results, such as the h-principle of Gromov applied here to Lagrangian immersions (and also to the construction of examples of Lagrangian embeddings) and rigidity theorems, based on existence theorems for pseudo-holomorphic curves.

Keywords

Symplectic Manifold Double Point Cotangent Bundle Lagrangian Submanifold Klein Bottle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    P. Ahern, W. Rudin, A totally real embedding of S3 into C 3, Proc. Amer. Math. Soc 94 (1985), 460.MathSciNetzbMATHGoogle Scholar
  2. [2]
    V.I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Springer, 1978.Google Scholar
  3. [3]
    V.I. Arnold, Lagrange and Legendre cobordisms I and II, Funct. Anal. Appl. 14 (1980), 167–177 and 252–260.CrossRefGoogle Scholar
  4. [4]
    V.I. Arnold, First steps in symplectic topology, Russian Math. Surveys 41(6) (1986), 1–21.CrossRefGoogle Scholar
  5. [5]
    M. Audin, Cobordisme d’immersions lagrangiennes et legendriennes, Travaux en cours, Hermann, Paris, 1987.Google Scholar
  6. [6]
    M. Audin, Classes caractéristiques lagrangiennes, in Algebraic Topology, Barcelone 1986, Springer Lecture Notes in Math. 1298 (1988), 1–15.Google Scholar
  7. [7]
    M. Audin, Fibrés normaux d’immersions en dimension moitié, points doubles d’immersions lagrangiennes et plongements totalement réels, Comment. Math. Helv. 63 (1988), 593–623.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Audin, Quelques remarques sur les surfaces lagrangiennes de Givental, Journal of Geometry and Physics 7 (1990), 583–598.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Audin, The topology of torus actions on symplectic manifolds, Progress in Mathematics, Birkhäuser, 1991.Google Scholar
  10. [10]
    V. Bangert, Aubry-Mather sets and geodesics on tori, Dynamics Reported 1 (1988), 1–54.MathSciNetGoogle Scholar
  11. [11]
    L. Bates, G. Peschke, A remarkable symplectic structure, J. Diff. Geom. 32 (1990), 533–538.MathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Bialy, Aubry-Mather sets and Birkhoff’s theorem for geodesic flows on the two-dimensional torus, Comm. Math. Phys. 126 (1989), 13–24.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Birkhoff, Surface transformations and their dynamical applications in Collected Math. Papers, volume 2.Google Scholar
  14. [14]
    M. Bialy, L. Polterovich, Geodesic flows on the two-dimensional torus and phase transitions “commensurability-incommensurability”, Funct. Anal. Appl. 20 (1986), 260–266.MathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Bialy, L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Invent. Math. 97 (1989), 291–303.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Bialy, L. Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. and Funct. Analysis 2 (1992), 173–210.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Bialy, L. Polterovich, Optical Hamiltonian functions, Preprint, Tel Aviv, 1992.Google Scholar
  18. [18]
    K. Burns, M. Gerber, Real analytic Bernoulli geodesic flows on S 2, Ergod. Th. Dynam. Syst. 9 (1989), 27–45.MathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Chaperon, Questions de géométrie symplectique, in Séminaire Bourbaki, Astérisque 105–106 (1983), 231–249.MathSciNetGoogle Scholar
  20. [20]
    V. Donnay, Geodesic flows on the two-sphere, Part I: Positive measure entropy, Ergod. Th. Dynam. Syst. 8 (1988), 531–553.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Fathi, Une interprétation plus topologique de la démonstration du théorème de Birkhoff, Astérisque 103–104 (1983).Google Scholar
  22. [22]
    A.B. Givental, Lagrange embeddings of surf aces and unfolded Whitney umbrellas, Functs. Anal. ego Prilozh. 20 (1986), fasc. 3, 35–41.MathSciNetGoogle Scholar
  23. [23]
    M. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes Congrès Intern. Math., Nice, 2 (1970), 221–225.Google Scholar
  24. [24]
    M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Gromov, Partial differential relations, Ergebnisse der Math., Springer, 1986.Google Scholar
  26. [26]
    M. Gromov, Soft and hard symplectic topology, Proc. Intern. Cong. Math. Berkeley (1986), 81–98.Google Scholar
  27. [27]
    M. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau, Astérisque 103–104 (1983).Google Scholar
  28. [28]
    M. Herman, Inégalités “a priori” pour des tores Lagrangiens invariants par des difféomorphismes symplectiques, Publ. Math. IHES 70 (1989), 47–101.MathSciNetzbMATHGoogle Scholar
  29. [29]
    D. Husemoller, Fibre bundles, McGraw Hill, New York, 1966.zbMATHGoogle Scholar
  30. [30]
    F. Lalonde, Suppression lagrangienne de points doubles et rigidité symplec-tique, J. Diff. Geom. 36 (1992), 747–764.MathSciNetzbMATHGoogle Scholar
  31. [31]
    F. Lalonde, J.-C. Sikorav, Sous-variétés lagrangiennes des fibrés cotangents, Comment. Math. Helv. 66 (1991), 18–33.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J.A. Lees, On the classification of Lagrange immersions, Duke Math. J. 43 (1976), 217–224.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    R. MacKay, A criterion for non-existence of invariant tori for Hamiltonian systems, Physica 36D (1989), 64–82.MathSciNetGoogle Scholar
  34. [34]
    J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Reports in Math. Phys. 5 (1974), 121–130.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    W.H. Massey, Algebraic topology, an introduction, Graduate texts in mathematics, Springer, 1967.Google Scholar
  36. [36]
    D. McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), 13–36.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M.P. Muller, Une structure symplectique sur R 6 avec une sphère lagran-gienne plongée et un champ de Liouville complet, Comment. Math. Helv. 65 (1990), 623–663.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G. Paternain, M. Paternain, Anosov optical Hamiltonians, Math. Z., to appear.Google Scholar
  39. [39]
    L. Polterovich, Monotone Lagrangian submanifolds of linear spaces and the Maslov class in cotangent bundles, Math. Z. 207 (1991), 217–222.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    L. Polterovich, The second Birkhoff theorem for optical Hamiltonian systems, Proc. Amer. Math. Soc. 113 (1991), 513–516.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    L. Polterovich, The Maslov class rigidity and non-existence of Lagrangian embeddings, Preprint, 1990, IHES/M/90/81.Google Scholar
  42. [42]
    L. Polterovich, The surgery of Lagrange submanifolds, Geom. and Funct. Analysis 1 (1991), 198–210.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J.-C. Sikorav, Non existence de sous-variété lagrangienne exacte dans C n (d’après Gromov), in Séminaire Sud-Rhodanien de géométrie VI, Hermann, Paris, 1987.Google Scholar
  44. [44]
    J.-C. Sikorav, Corollaires symplectiques, preprint (1987).Google Scholar
  45. [45]
    S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    E. L. Stout, W. R. Zame, Totally real embeddings and the universal covering spaces of domains of holomorphy, Manuscripta Math. 50 (1985), 29–48.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    I.N. Vekua, Generalized analytic functions, Pergamon, 1962.Google Scholar
  48. [48]
    C. Viterbo, Lagrangian embeddings and symplectic structures in Colloque en l’honneur de R. Couty, Limoges, 1984.Google Scholar
  49. [49]
    C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math. 100 (1990), 301–320.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Weinstein, Lectures on symplectic manifolds, Regional Conference Series in mathematics, 1977.Google Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Michèle Audin
  • François Lalonde
  • Leonid Polterovich

There are no affiliations available

Personalised recommendations