Introduction Applications of pseudo-holomorphic curves to symplectic topology

  • Jacques Lafontaine
  • Michèle Audin
Part of the Progress in Mathematics book series (PM, volume 117)


This chapter is an introduction to the book. First we will describe some problems in symplectic geometry, or more exactly topology, and the way to solve them using pseudo-holomorphic curves techniques. Then we describe very roughly the contents of the book. For the basic results in geometry, the reader can consult chapters I, II or III.


Symplectic Form Symplectic Structure Homology Class Lagrangian Submanifolds Rigidity Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.I. Arnold, First steps in symplectic topology, Russian Math. Surveys 41 (6) (1986), 1–21.CrossRefGoogle Scholar
  2. [2]
    D. Bennequin, Problèmes elliptiques, surfaces de Riemann et structures sym-plectiques, in Séminaire Bourbaki, Astérisque 145–146 (1987), 111–136.MathSciNetGoogle Scholar
  3. [3]
    M. Chaperon, Questions de géométrie symplectique, in Séminaire Bourbaki, Astérisque 105–106 (1983), 231–249.MathSciNetGoogle Scholar
  4. [4]
    J. Duval, Convexité rationnelle des surfaces lagrangiennes, Invent. Math. 104 (581–599), 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Duval, Une caractérisation kählérienne des surfaces rationnellement convexes, Acta Math., to appear.Google Scholar
  6. [6]
    Ya. Eliashberg, Filling by holomorphic disks and applications, London Math. Soc. lecture Notes Series 151 (1991), 45–67.MathSciNetGoogle Scholar
  7. [7]
    Ya. ELIASHBERG, M. Gromov, Convex symplectic manifolds, Proc. of Symposia in Pure Math. 52 (1990), Part 2, 135–161.MathSciNetGoogle Scholar
  8. [8]
    E. Giroux, Topologie de contact en dimension 3, in Séminaire Bourbaki, Astérisque (1992).Google Scholar
  9. [9]
    M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Gromov, Soft and hard symplectic topology, Proc. Intern. Cong. Math. Berkeley (1986), 81–98.Google Scholar
  11. [11]
    M. Gromov, Partial differential relations, Ergebnisse der Math., Springer, 1986.Google Scholar
  12. [12]
    R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    B. Lawson, Minimal varieties in real and complex geometry, Sérn. Math. Supérieures, Presses de l’Université de Montréal, 1973.Google Scholar
  14. [14]
    D. McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), 1–36.MathSciNetCrossRefGoogle Scholar
  15. [15]
    D. McDuff, Rational and ruled symplectic A-manifolds and Erratum, Journal Amer. Math. Soc. 3 (1990), 679–712 and 5 (1992) 988–997.MathSciNetzbMATHGoogle Scholar
  16. [16]
    D. McDuff, Notes on ruled symplectic 4-manifolds, Trans. Amer. Math. Soc., to appear.Google Scholar
  17. [17]
    D. McDuff, L. Polterovich, Symplectic packings and algebraic geometry, preprint (1993).Google Scholar
  18. [18]
    D. McDuff, L. Traynor, The 4-dimensional symplectic camel and related results, in Proc. of the Warwick Conference (1990), to appear in Cambridge University Press.Google Scholar
  19. [19]
    M.-P. Muller, HOW can we distinguish symplectic structures on a manifold?, preprint (1990).Google Scholar
  20. [20]
    Première classe de Chern and courbure de Ricci: preuve de la conjecture de Calabi, Astérisque 57, Société Mathématique de France, 1978.Google Scholar
  21. [21]
    D. Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), 113–140.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I.R. Shafarevich, Basic algebraic geometry, Grundlehren der math. Wiss., Springer, 1974.Google Scholar
  23. [23]
    J.-C. Sikorov, Homologie associée à une fonctionnelle, in Séminaire Bourbaki, Astérisque 201–202–203 (1991), 115–141.Google Scholar
  24. [24]
    C. Viterbo, Capacités symplectiques et applications, in Séminaire Bourbaki, Astérisque 177–178 (1989), 345–362.MathSciNetGoogle Scholar
  25. [25]
    C. Viterbo, Une introduction à la topologie symplectique, Gazette des Mathématiciens 54 (1992), 81–96.MathSciNetzbMATHGoogle Scholar
  26. [26]
    J. Wolfson, Gromov’s compactness of pseudo-holomorphic curves and Symplectic Geometry, J. Diff. Geom. 38 (1988), 383–405.MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Jacques Lafontaine
  • Michèle Audin

There are no affiliations available

Personalised recommendations