Fractal Dimensions and Dendritic Branching of Neurons in the Somatosensory Thalamus

  • Klaus-D. Kniffki
  • Matthias Pawlak
  • Christiane Vahle-Hinz
Part of the Mathematics and Biosciences in Interaction book series (MBI)


The investigation and modelling of irreversible growth phenomena has become a topic of considerable interest in the last decade, stimulated by the introduction of the concept of fractality by B.B. Mandelbrot. This concept provides a quantitative framework to study in particular biological growth phenomena of complex shapes, such as the branching structures of trees, of bronchial trees and of blood vessels. Recently, it was shown that the shapes of 2-dimensional retinal neurons are fractal objects, and hence may be characterized by their fractal dimension D = 1.68±0.15 (Caserta et al., 1990). The authors proposed an explanation of certain stages of neuronal development by a diffusion-limited particle-cluster aggregation (DLA) model, which predicts in 2-dimensional space D = 1.70 ± 0.1.


Fractal Dimension Dendritic Tree Bronchial Tree Dendritic Branch Branch Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Block, A., von Bloh, W., Schellnhuber, H.J. Efficient box-counting determination of generalized fractal dimensions. Phys. Rev. A. 42: 1869–1874 (1990).PubMedCrossRefGoogle Scholar
  2. [2]
    Block, A., von Bloh, W., Schellnhuber, HJ. Aggregation by attractive particle-cluster interaction. J. Phys. A. Math. Gen. 24: L1037–L1044 (1991).CrossRefGoogle Scholar
  3. [3]
    Caserta, F., Stanley, H.E., Eldred, W.D., Daccord, G., Hausman, R.E., Nitt-mann, J. Physical mechanisms underlying neurite outgrowth: A quantitative analysis of neuronal shape. Phys. Rev. Lett. 64: 95–98 (1990).PubMedCrossRefGoogle Scholar
  4. [4]
    Hamilton, P. A language to describe the growth of neurites. Biol. Cybern. 68: 559–565 (1993).PubMedCrossRefGoogle Scholar
  5. [5]
    Kernell, D., Zwaagstra, B. Dendrites of cat’s spinal motoneurons: Relationship between stem diameter and predicted input conductance. J.Physiol. 413: 255–269 (1989).PubMedGoogle Scholar
  6. [6]
    Kniffki, K.-D., Chialvo, D., Vahle-Hinz, C., Apkarian, A.V. Fractal dimensions of neurons located in the cat’s thalamic ventrobasal complex (VB) and its ventral periphery (VB vp). Soc. Neurosci. Abstr. 16: 622 (1991).Google Scholar
  7. [7]
    Kniffki, K.-D., Pawlak, M., Vahle-Hinz, C. Scaling behavior of the dendritic branches of thalamic neurons. Fractals 1/2: 171–178 (1993a).CrossRefGoogle Scholar
  8. [8]
    Kniffki, K.-D., Vahle-Hinz, C., Block, A., von Bloh, W., Schellnhuber, HJ. Fractal scaling characteristics of 3-dimensional thalamic neurons. In preparation (1993).Google Scholar
  9. [9]
    Mandelbrot, B.B. The fractal geometry of nature. Freeman, New York (1983).Google Scholar
  10. [10]
    Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1: 491–527 (1959).PubMedCrossRefGoogle Scholar
  11. [11]
    Schierwagen, A., Grantyn, R. Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J. Hirn-forsch. 27: 611–623 (1986).Google Scholar
  12. [12]
    Schierwagen, A. A non-uniform cable model of membrane voltage changes in a passive dendritic tree. J. theor. Biol. 141: 159–179 (1989).PubMedCrossRefGoogle Scholar
  13. [13]
    Smith, T.G., Marks, W.B., Lange, G.D., Sheriff Jr., W.H., Neale, E.A. A fractal analysis of cell images. J. Neurosci. Methods 7: 173–180 (1989).CrossRefGoogle Scholar
  14. [14]
    Takayasu, H. Fractals in the physical sciences. Manchester University Press, Manchester and New York (1990).Google Scholar
  15. [15]
    Vahle-Hinz, C., Pawlak, M., Kniffki, K.-D. Morphology of neurons in the ventral periphery of the thalamic ventrobasal complex (VB vp) of the cat. J. Comp. Neurol. (in press, 1993).Google Scholar
  16. [16]
    van Veen, M. van Pelt, J. A model of outgrowth of branching neurites. J. theor. Biol. 159: 1–23 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Klaus-D. Kniffki
    • 1
  • Matthias Pawlak
    • 1
  • Christiane Vahle-Hinz
    • 1
  1. 1.Physiologisches institutUniversität WürzburgWürzburgGermany

Personalised recommendations