Control Applications of Reduced SQP Methods

  • Ekkehard W. Sachs
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)


Reduced Successive Quadratic Programming (SQP) methods have been applied to various areas in optimization. In this paper we consider mainly applications from optimal control and neighboring areas. The convergence analysis in Hilbert spaces is reviewed and the main ingredients are filtered out for the design of reduced SQP methods. As applications we chose examples from control and parameter identification with partial differential equations, process optimization in chemical engineering, and aerodynamic shape optimization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. T. Betts. The application of sparse Broyden updates in the collocation method for optimal control problems. Technical report, Boeing Computer Services, 1988.Google Scholar
  2. [2]
    H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Doktorarbeit, Universität Bonn, 1985.Google Scholar
  3. [3]
    J. Burger and M. Pogu. Functional and numerical solution of a control problem originating from heat transfer. J. Optim. Theory Appl., 68:49–73, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R. H. Byrd and J. Nocedal. An analysis of reduced Hessian methods for constrained optimization. Math. Programming, 49:285–323, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R. H. Byrd and R. B. Schnabel. Continuity of the null space basis and constrained optimization. Math. Programming, 35:32–41, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    T. F. Coleman and A. R. Conn. On the local convergence of a quasi-Newton method for the nonlinear programming problem. SIAM J. Numer. Anal., 21:755–769, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    T. F. Coleman and D. C. Sorensen. A note on the computation of an ortho-normal basis for the null space of a matrix. Math. Programming, 29:234–242, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    D. Gabay. Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization. Math. Programming Study, 16:18–44, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    J. C. Gilbert. Une méthode à métrique variable réduite en optimisation avec contraintes d’ égalité non linéaires. Technical Report RR-482, INRIA, 1986.Google Scholar
  10. [10]
    P. E. Gill, W. Murray, and M. A. Saunders. SNOPT:A sparse nonlinear optimizer. In W. W. Hager, D. W. Hearn, and P. M. Pardalos, editors, Conference on Large Scale Optimization, 1993.Google Scholar
  11. [11]
    P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London -... -Tokyo, 1981.zbMATHGoogle Scholar
  12. [12]
    C. B. Gurwitz. A two-piece reduced Hessian updating method for solving nonlinear programming problems. Technical report, Department of Computer and Information Science, Brooklyn College, 1991.Google Scholar
  13. [13]
    C. B. Gurwitz and M. L. Overton. Sequential quadratic programming methods based on approximating a projected Hessian matrix. SIAM J. Sci. Stat. Comput., 10:631–653, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    D. Kraft. Comparing mathematical programming algorithms based on lagrangian functions for solving optimal control problems. In H. E. Rauch, editor, Control Applications of Nonlinear Programming. Pergamon Press, 1979.Google Scholar
  15. [15]
    K. Kunisch and E. W. Sachs. Reduced SQP methods for parameter identification problems. SIAM J. Numer. Anal., 29:1793–1820, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    F.-S. Kupfer. Reduced Successive Quadratic Programming in Hilbert space with applications to optimal control. doctoral thesis, Universität Trier, 1992.Google Scholar
  17. [17]
    F.-S. Kupfer and E. W. Sachs. Numerical solution of a nonlinear parabolic control problem by a reduced SQP method. Computational Optimization and Applications, 1:113–135, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    F.-S. Kupfer and E. W. Sachs. Reduced SQP methods for nonlinear heat conduction problems. In R. Bulirsch, A. Miele, J. Stoer, and K. H. Well, editors, Optimal Control, Oberwolfach 1991, volume 111 of Int. Series Num. Math., pages 145–160. Birkhäuser, 1993.Google Scholar
  19. [19]
    J. Nocedal L. T. Biegler and C. Schmid. A reduced Hessian method for large scale constrained optimization. Technical report, Carnegie-Mellon University, 1993. Preprint.Google Scholar
  20. [20]
    D. C. Luenberger. Optimization by Vector Space Methods. Wiley, New York, 1969.zbMATHGoogle Scholar
  21. [21]
    K. C. P. Machielsen. Numerical solution of optimal control problems with state constraints by sequential quadratic programming in function space. CWI Tract. Centrum voor Wiskunde en Informatica, Amsterdam, 1988.zbMATHGoogle Scholar
  22. [22]
    J. Nocedal and M. L. Overton. Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM J. Numer. Anal., 22:821–850, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    C. E. Orozco and O. N. Ghattas. Massively parallel aerodynamic shape optimization. In Proceedings of the Symposium on High Performance Computing for Flight Vehicles, 1991. to appear.Google Scholar
  24. [24]
    C. Schmid and L. T. Biegler. Acceleration of reduced Hessian methods for large-scale nonlinear programming. Computers chem. Engng., 17:451–463, 1993.CrossRefGoogle Scholar
  25. [25]
    S. Vasantharajan, J. Viswanathan, and L. T. Biegler. Reduced successive quadratic programming implementation for large-scale optimization problems with smaller degrees of freedom. Computers chem. Engng., 14:907–915, 1990.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • Ekkehard W. Sachs
    • 1
  1. 1.FB IV -MathematikUniversität TrierTrierGermany

Personalised recommendations