Linear Optimal Control for Reentry Flight

  • Axel J. Roenneke
  • Klaus H. Well
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)


We present a linear optimal control law to control an unmanned reentry vehicle to a reference. The control law is locally optimal minimizing a quadratic performance index at discrete points on the reference. Simulation results show that the controller eliminates trajectory errors resulting from off-nominal entry conditions and aerodynamics as well as atmospheric disturbances.


Feedback Gain Reference Trajectory Entry Condition Trajectory Control Bank Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aenishanslin, M. H., “Space Mail Feasibility Study,” Sociétée Nationale Industrielle Aérospatiale, Les Mureaux, France, Columbus Preparatory Programme Report COL-TN-AS-0050, Nov. 1986.Google Scholar
  2. 2.
    Schöttle, U., et al., “Conceptual Study of a Small Semiballistic Reentry Experiment Vehicle,” 41st Congress of the International Astronautical Federation (Dresden, Germany), IAF-90-163, Oct. 1990.Google Scholar
  3. 3.
    Mascey, A. C., et al., “The Reusable Reentry Satellite-Keeping it Up and Bringing it Down” Proc. of the 1988 AIAA/AAS Astrodynamics Conf. (Minneapolis, Minn.), AIAA, Washington, Aug. 1988, pp. 310–322. (AIAA 88-4257-CP)Google Scholar
  4. 4.
    4Albert, J. C., et al., “Online Guidance and Control of a Spacecraft for an Aeroassisted Orbit Transfer,” Proc. of the 12th IFAC Symp. on Automatic Control in Aerospace (Ottobrunn, Germany), Intl. Federation of Automatic Control, Laxenburg, Austria, Sep. 1992, pp. 147–152.Google Scholar
  5. 5.
    5Gamble, J. D., et al., “Atmospheric Guidance Concept for an Aeroassist Flight Experiment,” Journal of the Astronautical Sciences, Vol. 36, Jan.-June 1988, pp. 45–71.Google Scholar
  6. 6.
    Morth, R., “Reentry Guidance for Apollo,” Proc. of the 2nd IFAC Conf. on Automatic Control in Space (Vienna, Austria), Intl. Federation of Automatic Control, Laxenburg, Austria, Sep. 1967, pp. 735–759.Google Scholar
  7. 7.
    ACRI and Laboratoire d’Automatique de Nantes, “Guidance and Control for Moderate Lift/Drag Re-Entry,” ESA European Space and Technology Center, Noordwijk, The Netherlands, Contract Report 9359-91-NL-JG, May 1992.Google Scholar
  8. 8.
    Seyler, T. A., and Florence, D. E., “Upper Atmospheric Disturbance Effects on Reentry Satellite Landing Accuracy,” Proc. of the AIAA/AAS Astrodynamcis Conf., AIAA, Washington, Aug. 1991, pp. 2371–2377. (AAS 91-495)Google Scholar
  9. 9.
    Wingrove, R. C., “A Survey of Atmosphere Re-Entry Guidance and Control Methods,” AIAA Journal, Vol. 1, Sep. 1963, pp. 2019–2029.CrossRefGoogle Scholar
  10. 10.
    10Battin, R. H., Astronautical Guidance, McGraw-Hill, New York, 1964.Google Scholar
  11. 11.
    National Aeronautics and Space Administration, Guidance and Navigation for Entry Vehicles, NASA Space Vehicle Design Criteria, NASA SP-8015, Nov. 1968.Google Scholar
  12. 12.
    Graves, C. A., and Harpold, J. C., “Apollo Experience Report-Mission Planning for Apollo Entry,” NASA TN D-6725, 1972.Google Scholar
  13. 13.
    Stiles, J. A., “Predictive Entry Guidance for an Apollo-Type Vehicle,” Proc. of the 3rd IFAC Symp. on Automatic Control in Space, Toulouse, France, Intl. Federation of Automatic Control, Laxenburg, Austria, Mar. 1970, pp. 732–740.Google Scholar
  14. 14.
    Cramer, E. J., et al., “NLP Re-Entry Guidance: Developing a Strategy for Low L/D Vehicles,” AIAA 88-4123-CP, 1988.Google Scholar
  15. 15.
    Corban, J. E., et al., “Rapid Near-Optimal Aerospace Plane Trajectory Generation and Guidance,” Journal of Guidance, Control and Dynamics, Vol. 14, No. 6, Nov.-Dec. 1991, pp. 1181–1190.zbMATHCrossRefGoogle Scholar
  16. 16.
    Schänzer, G., and Kayser, D., “Precision Navigation-A New Approach for Re-Entry Vehicles,” Proc. of the 12th IFAC Symposiom on Automatic Control in Aerospace (Ottobrunn, Germany), Intl. Federation of Automatic Control, Laxenburg, Austria, Sep. 1992, pp. 105–110.Google Scholar
  17. 17.
    Roenneke, A. J., and Cornwell, P. J., “Trajectory Control for a Low-Lift Maneuverable Re-Entry Vehicle,” AIAA 92-1146-CP, Feb. 1992.Google Scholar
  18. 18.
    Roenneke, A. J., and Well, K. H., “Re-Entry Control of a Low-Lift Maneuverable Spacecraft,” Proc. of the 1992 AIAA Guidance, Navigation, and Control Conf. (Hilton Head, S.C.), AIAA, Washington, Aug. 1992, pp. 641–652. (AIAA 92-4455-CP)Google Scholar
  19. 19.
    Miele, A., Flight Mechanics, Addison-Wesley, Reading, Mass., 1962.Google Scholar
  20. 20.
    Vinh, N. X., Optimal Trajectories in Atmospheric Flight, Elsevier, New York, 1981.Google Scholar
  21. 21.
    Bryson, A. E., and Ho, Y., Applied Optimal Control, Hemisphere Publishing, New York, 1975.Google Scholar
  22. 22.
    Roenneke, A. J., Trajectory Control for a Low-Lift Maneuverable Re-Entry Vehicle Using State Feedback, M.S. Thesis, Rose-Hulman Institute of Technology, Terre Haute, Ind., May 1991.Google Scholar
  23. 23.
    Anderson, B. D., and Moore, J. B., Optimal Control, Prentice-Hall, Englewood Cliffs, N.J., 1990.zbMATHGoogle Scholar
  24. 24.
    Gamble, J. D., and Findlay, J. T., “Shuttle-Derived Densities in the Middle Atmosphere,” AIAA 88-4352-CP, 1988.Google Scholar
  25. 25.
    U.S. National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere 1976, U.S. GPO, Washington, NOAA-S/T 76–1562, 1976.Google Scholar
  26. 26.
    Crowder, R. S., and Moote, J. D., “Apollo Entry Aerodynamics,” Journal of Spacecraft, Vol. 6, Mar. 1969, pp. 302–307.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • Axel J. Roenneke
    • 1
  • Klaus H. Well
    • 1
  1. 1.Institut für Flugmechanik und FlugregelungUniversität StuttgartStuttgartGermany

Personalised recommendations