A Robotic Satellite with Simplified Design

  • R. Callies
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)


Modern techniques of optimization and control considerably increase the performance of small, robotic satellites. As an example, an advanced near-Earth mission is presented for such a spacecraft. Not only a point-mass model is considered, but the full rigid body dynamics of a highly realistic model spacecraft is taken into account. The arising problems are formulated mathematically as boundary-value problems for complex systems of highly nonlinear differential equations. All scientific and technological constraints are exactly included as state and control constraints and interior point conditions. The numerical solution of the boundary-value problems is by a modified multiple shooting method. Problems of scaling and extremely small convergence areas require new solution techniques. For the first time the proof of mission feasibility is given. Moreover maximum thrust level is reduced by a factor of 4, cheap thrusters are used that are fixed to their positions, optimal momentum steering replaces conventional thrust vector steering -all this with a performance reduction of less than 2 per cent, but a dramatic decrease in mechanical complexity. Single stage design results in a further decrease of operation complexity and costs.


Exhaust Velocity Multiple Shooting Method Thrust Magnitude Interior Point Condition Single Stage Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Iglseder, H., Arens-Fischer, W., Keller, H.U., Arnold, G., Callies, R., Fick, M., Glassmeier, K.H., Hirsch, H., Hoffmann, M., Rath, H.J., Kührt, E., Lorenz, E., Thomas, N., Wäsch, R., INEO -Imaging of Near Earth Objects. COSPAR-Paper 1-M.1.03, Washington (1992).Google Scholar
  2. [2]
    Junkins, J.L., Turner, J.D., Optimal Spacecraft Rotational Maneuvers, Elsevier Science Publ. Comp., New York, 1986.Google Scholar
  3. [3]
    Bulirsch, R., Callies, R., Optimal trajectories for a multiple rendezvous mission to asteroids. Acta Astronautica 26 (1992) 587–597.CrossRefGoogle Scholar
  4. [4]
    Bryson, A.E., Ho, Y.-C., Applied Optimal Control, Revised Printing, Hemisphere Publishing Corp., Washington D.C., 1975.Google Scholar
  5. [5]
    Oberle, H.J., Numerical Computation of Minimum-Fuel Space-Travel Problems by Multiple Shooting, Report TUM-MATH-7635, Dept. of Mathematics, Munich Univ. of Technology, Germany, 1976.Google Scholar
  6. [6]
    Bulirsch, R., Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Report of the Carl-Cranz-Gesellschaft e.V., Oberpfaffenhofen, 1971. Reprint: Department of Mathematics, Munich University of Technology, Germany (1993).Google Scholar
  7. [7]
    Deuflhard, P., Ein Newton-Verfahren bei fast singulärer Funktionalmatrix zur Lösung von nichtlinearen Randwertaufgaben mit der Mehrzielmethode, Thesis, Cologne, 1972.Google Scholar
  8. [8]
    Oberle, H.J., Numerische Behandlung singulärer Steuerungen mit der Mehr zielmethode am Beispiel der Klimatisierung von Sonnenhäusern, Thesis, Munich, 1977.Google Scholar
  9. [9]
    Bulirsch, R., Stoer, J., Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods, Num. Math. 8 (1966) 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Callies, R., Optimale Flugbahnen einer Raumsonde mit Ionentriebwerken, Thesis, Munich, 1990.Google Scholar
  11. [11]
    Penzo, P.A., Mission Opportunities for Near-Earth Asteroids, International Conference on Near Earth Asteroids, San Juan Capistrano, 1991.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • R. Callies
    • 1
  1. 1.Department of MathematicsMunich University of TechnologyMunichGermany

Personalised recommendations