Advertisement

OCCAL A Mixed Symbolic-Numeric Optimal Control CALculator

  • Rainer Schöpf
  • Peter Deuflhard
Chapter
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)

Abstract

The numerical solution of optimal control problems by indirect methods (such as multiple shooting or collocation) usually requires a considerable amount of analytic calculation to establish a numerically tractable system. The reason for that is that certain steps in the analytical preparation of the calculation, which are simple in principle, may be very elaborate and can lead to rather complex expressions. Implementation of these into numerical code by hand is tiresome and error-prone.

Keywords

Optimal Control Problem Multiple Shooting Symbolic Calculation Singular Control Arithmetic Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. G. Bock: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Universität Bonn, Dissertation (1985).Google Scholar
  2. [2]
    H. G. Bock: Numerical Solution of Nonlineaer Multipoint Boundary Value Problems with Applications to Optimal Control, GAMM, Copenhagen 1977.Google Scholar
  3. [3]
    H. G. Bock: Numerische Berechnung zustandsbeschränkter optimaler Steuerungen mit der Mehrzielmethode, Carl-Cranz-Gesellschaft 1978.Google Scholar
  4. [4]
    R. Bulirsch: Variationsrechnung und optimale Steuerung. Lectures given at the Universität zu Köln (1971). Unpublished.Google Scholar
  5. [5]
    P. Deuflhard, B. Engquist (Ed.): Large Scale Scientific Computing, Birkhauser/Boston, Series “Progress In Scientific Computing”, Vol. 7 (1987).Google Scholar
  6. [6]
    P. Deuflhard, B. Fiedler, P. Kunkel: Efficient Numerical Pathfollowing Beyond Critical Points in ODE models, in: P. Deuflhard, B. Engquist (Ed.): Large Scale Scientific Computing, Birkhauser/Boston, Series “Progress In Scientific Computing”, Vol. 7, pp. 97–113 (1987).Google Scholar
  7. [7]
    J. A. van Hulzen: Code optimization of multivariate polynomial schemes: A pragmatic approach, Proceedings EUROCAL’83, Springer LNCS 162, pp. 286–300.Google Scholar
  8. [8]
    H. J. Oberle: Numerical Computation of Singular Control Functions for a Two-Link Robot Arm, Preprint Universität Hamburg, Institut für angewandte MathematikGoogle Scholar
  9. [9]
    R. Schöpf, P. Deuflhard: OCCAL -A mixed symbolic-numeric Optimal Control CALculator, ZIB Preprint SC 91–13 (1991). Submitted for publication in: R. Liska and S. Steinberg (Eds.), Computer Algebra Applications in Science.Google Scholar
  10. [10]
    J. Stoer, R. Bulirsch: Introduction to Numerical Analysis, Springer Verlag, Berlin 1980.Google Scholar
  11. [11]
    A. Weinreb, A. E. Bryson: Minimum-Time Control of a Two-Link Robot Arm; presented at the 5th IFAC Workshop on Nonlinear Programming and Optimization, Capri, 1985.Google Scholar
  12. [12]
    M. Wulkow: Vergleich numerischer Verfahren zur Berechnung der optimalen Steuerung eines Turbogenerators, Diploma Thesis, Univ. Münster, 1987.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • Rainer Schöpf
    • 1
  • Peter Deuflhard
    • 1
  1. 1.Konrad-Zuse-Rechenzentrum für Informationstechnik BerlinBerlinGermany

Personalised recommendations