ANDECS: A Computation Environment for Control Applications of Optimization

  • G. Grübel
  • R. Finsterwalder
  • G. Gramlich
  • H.-D. Joos
  • S. Lewald
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)


An engineering control design environment is reported on which integrates optimal control synthesis within a vector-optimization based engineering control design frame. Dealt with in particular are: a conceptual frame of a design-process feedback loop, a modular software realization thereof, and features of a human-interaction facility for computational design experimenting.


Optimal control synthesis vector-optimization control design software environment for design experimentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.D.O. Anderson and J.B. Moore. Linear Optimal Control Prentice Hall, Englewood Cliffs, 1979.Google Scholar
  2. [2]
    J. Bals. Parameter optimized hyperstable controllers. In Proc. 30th CDC, Brighton, UK, 1990.Google Scholar
  3. [3]
    J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, 1983.zbMATHGoogle Scholar
  4. [4]
    Elmqvist, H.: Object-Oriented Modeling and Automatic Formula Manipulation in Dymola. SIMS’93 Scandinavian Simulation Society, Kongsberg, Norway, June 9–11, 1993.Google Scholar
  5. [5]
    A.G.J. MacFarlane, G. Grübel, and J. Ackermann. Future design environments for control engineering. Automatica, vol. 25, pp. 165–176, 1989.CrossRefGoogle Scholar
  6. [6]
    R. Finsterwalder. Interaktiv-graphische Rechnerunterstützung beim parametrischen Entwurfs-Experimentieren, Dissertation, Ruhr-Universität Bochum, VDI-Fortschrittberichte, Reihe 20, Nr. 102, 1993.Google Scholar
  7. [7]
    G. Grübel, H.-D. Joos, M. Otter, and R. Finsterwalder. The ANDECS design environment for control engineering. In Proc. 12th IFAC 1993 World Congress, Sydney, July 18–23, vol. 6, pp. 447–454, 1993.Google Scholar
  8. [8]
    G. Grübel, R. Finsterwalder, H.-D. Joos, and J. Bals. Parametric-Design Modes of the ANDECS Control-Dynamics Design Machine. Proc. Second European Control Conference ECC’93, Groningen, pp. 1587–1592, 1993.Google Scholar
  9. [9]
    G. Grübel and H.-D. Joos. RASP and RSYST -Two Complementary Program Libraries for Concurrent Control Engineering. Proc. 5th IFAC/IMACS Symposium on Computer Aided Design in Control Systems, University of Wales, Swansea, UK, July 15–17, 1991, Pergamon Press, Oxford, pp. 101–106, 1991Google Scholar
  10. [10]
    G. Grübel, M. Otter, F. Breitenecker, A. Prinz, G. Schuster, I. Bausch-Gall, and H. Fischer. ACSL-Model Translator to the Neutral FORTRAN DSblock-Model Format. Submitted to Joint CACSD’94/CADCS’94 Symposium Tucson, March 7–9, 1994.Google Scholar
  11. [11]
    A.B. Höfler. Gradientenkettenoperatoren und ihre Anwendung bei der Reglerparameteroptimierung. Dissertation, Ruhr-Universität Bochum, 1980.Google Scholar
  12. [12]
    A. Inselberg and B. Dimsdale. Parallel coordinates for visualizing multidimensional geometry. In: Kunii T.L., editor, Computer Graphics 1987 -Proceedings of CG International ’87, pp. 69–91, 1987.Google Scholar
  13. [13]
    H.-D. Joos and M. Otter. “Control engineering data structures for concurrent engineering”. In Proc. 5th IFAC/IMACS Symposium on Computer Aided Design in Control Systems, Swansea, UK, pp. 107–112, 1991.Google Scholar
  14. [14]
    H.-D. Joos. Informationstechnische Behandlung des mehrzieligen optimie-rungsgestützten regelungstechnischen Entwurfs. Dissertation, Universität Stuttgart, VDI Fortschrittberichte, Reihe 20, Nr. 90, 1992.Google Scholar
  15. [15]
    D. Kraft. On converting optimal control problems into nonlinear programming problems, in: K. Schittkowski (ed.) Computational Mathematical Programming, Springer, Berlin, 1985.Google Scholar
  16. [16]
    G. Kreisselmeier and R. Steinhauser. Application of vector performance optimization to a robust control loop design for a fighter aircraft. Int. J. Control, vol. 37, No. 2, pp. 251–284, 1983.zbMATHGoogle Scholar
  17. [17]
    M. Otter and G. Grübel. Direct Physical Modeling and Automatic Code Generation for Mechatronics Simulation. Second Conference on Mechatronics and Robotics, Duisburg, September 27–29, 1993Google Scholar
  18. [18]
    H.T. Toivonen and P.M. Mäkilä. Newton’s method for solving parametric linear quadratic control problems. Int. J. Control, pp. 897–911, 1987.Google Scholar
  19. [19]
    H.T. Toivonen and P.M. Mäkilä. A Descent Anderson-Moore Algorithm for Optimal Decentralized Control. Automatica 21, p. 743 ff., 1985.CrossRefGoogle Scholar
  20. [20]
    T. Rautert, G. Gramlich and J. Bals. Optimierungsverfahren für parametrische LQ-Probleme zur Synthese linearer Regelungen mit Ausgangsgrößenrückkopplung, Technical Report TR R120–93, DLR, Institute for Robotics and System Dynamics, D-82234 Wessling, 1993.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • G. Grübel
    • 1
  • R. Finsterwalder
    • 1
  • G. Gramlich
    • 1
  • H.-D. Joos
    • 1
  • S. Lewald
    • 1
  1. 1.Control Design Engineering, Institute for Robotics and System DynamicsDLR - German Aerospace Research EstablishmentOberpfaffenhofenGermany

Personalised recommendations