Advertisement

ANDECS: A Computation Environment for Control Applications of Optimization

  • G. Grübel
  • R. Finsterwalder
  • G. Gramlich
  • H.-D. Joos
  • S. Lewald
Chapter
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)

Abstract

An engineering control design environment is reported on which integrates optimal control synthesis within a vector-optimization based engineering control design frame. Dealt with in particular are: a conceptual frame of a design-process feedback loop, a modular software realization thereof, and features of a human-interaction facility for computational design experimenting.

Keywords

Optimal control synthesis vector-optimization control design software environment for design experimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.D.O. Anderson and J.B. Moore. Linear Optimal Control Prentice Hall, Englewood Cliffs, 1979.Google Scholar
  2. [2]
    J. Bals. Parameter optimized hyperstable controllers. In Proc. 30th CDC, Brighton, UK, 1990.Google Scholar
  3. [3]
    J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, 1983.zbMATHGoogle Scholar
  4. [4]
    Elmqvist, H.: Object-Oriented Modeling and Automatic Formula Manipulation in Dymola. SIMS’93 Scandinavian Simulation Society, Kongsberg, Norway, June 9–11, 1993.Google Scholar
  5. [5]
    A.G.J. MacFarlane, G. Grübel, and J. Ackermann. Future design environments for control engineering. Automatica, vol. 25, pp. 165–176, 1989.CrossRefGoogle Scholar
  6. [6]
    R. Finsterwalder. Interaktiv-graphische Rechnerunterstützung beim parametrischen Entwurfs-Experimentieren, Dissertation, Ruhr-Universität Bochum, VDI-Fortschrittberichte, Reihe 20, Nr. 102, 1993.Google Scholar
  7. [7]
    G. Grübel, H.-D. Joos, M. Otter, and R. Finsterwalder. The ANDECS design environment for control engineering. In Proc. 12th IFAC 1993 World Congress, Sydney, July 18–23, vol. 6, pp. 447–454, 1993.Google Scholar
  8. [8]
    G. Grübel, R. Finsterwalder, H.-D. Joos, and J. Bals. Parametric-Design Modes of the ANDECS Control-Dynamics Design Machine. Proc. Second European Control Conference ECC’93, Groningen, pp. 1587–1592, 1993.Google Scholar
  9. [9]
    G. Grübel and H.-D. Joos. RASP and RSYST -Two Complementary Program Libraries for Concurrent Control Engineering. Proc. 5th IFAC/IMACS Symposium on Computer Aided Design in Control Systems, University of Wales, Swansea, UK, July 15–17, 1991, Pergamon Press, Oxford, pp. 101–106, 1991Google Scholar
  10. [10]
    G. Grübel, M. Otter, F. Breitenecker, A. Prinz, G. Schuster, I. Bausch-Gall, and H. Fischer. ACSL-Model Translator to the Neutral FORTRAN DSblock-Model Format. Submitted to Joint CACSD’94/CADCS’94 Symposium Tucson, March 7–9, 1994.Google Scholar
  11. [11]
    A.B. Höfler. Gradientenkettenoperatoren und ihre Anwendung bei der Reglerparameteroptimierung. Dissertation, Ruhr-Universität Bochum, 1980.Google Scholar
  12. [12]
    A. Inselberg and B. Dimsdale. Parallel coordinates for visualizing multidimensional geometry. In: Kunii T.L., editor, Computer Graphics 1987 -Proceedings of CG International ’87, pp. 69–91, 1987.Google Scholar
  13. [13]
    H.-D. Joos and M. Otter. “Control engineering data structures for concurrent engineering”. In Proc. 5th IFAC/IMACS Symposium on Computer Aided Design in Control Systems, Swansea, UK, pp. 107–112, 1991.Google Scholar
  14. [14]
    H.-D. Joos. Informationstechnische Behandlung des mehrzieligen optimie-rungsgestützten regelungstechnischen Entwurfs. Dissertation, Universität Stuttgart, VDI Fortschrittberichte, Reihe 20, Nr. 90, 1992.Google Scholar
  15. [15]
    D. Kraft. On converting optimal control problems into nonlinear programming problems, in: K. Schittkowski (ed.) Computational Mathematical Programming, Springer, Berlin, 1985.Google Scholar
  16. [16]
    G. Kreisselmeier and R. Steinhauser. Application of vector performance optimization to a robust control loop design for a fighter aircraft. Int. J. Control, vol. 37, No. 2, pp. 251–284, 1983.zbMATHGoogle Scholar
  17. [17]
    M. Otter and G. Grübel. Direct Physical Modeling and Automatic Code Generation for Mechatronics Simulation. Second Conference on Mechatronics and Robotics, Duisburg, September 27–29, 1993Google Scholar
  18. [18]
    H.T. Toivonen and P.M. Mäkilä. Newton’s method for solving parametric linear quadratic control problems. Int. J. Control, pp. 897–911, 1987.Google Scholar
  19. [19]
    H.T. Toivonen and P.M. Mäkilä. A Descent Anderson-Moore Algorithm for Optimal Decentralized Control. Automatica 21, p. 743 ff., 1985.CrossRefGoogle Scholar
  20. [20]
    T. Rautert, G. Gramlich and J. Bals. Optimierungsverfahren für parametrische LQ-Probleme zur Synthese linearer Regelungen mit Ausgangsgrößenrückkopplung, Technical Report TR R120–93, DLR, Institute for Robotics and System Dynamics, D-82234 Wessling, 1993.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • G. Grübel
    • 1
  • R. Finsterwalder
    • 1
  • G. Gramlich
    • 1
  • H.-D. Joos
    • 1
  • S. Lewald
    • 1
  1. 1.Control Design Engineering, Institute for Robotics and System DynamicsDLR - German Aerospace Research EstablishmentOberpfaffenhofenGermany

Personalised recommendations