Construction of the Optimal Feedback Controller for Constrained Optimal Control Problems with Unknown Disturbances

  • Michael H. Breitner
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)


Many optimal control problems can be solved today efficiently and conveniently by means of direct and indirect optimization methods. Thereby, unpredictable or unmeasureable influences are modelled as deterministic functions. Therefore, algorithms for the computation of feedback control laws are necessary in order to apply optimal solutions to real processes especially in the presence of uncertainties. A new approach for the construction of the optimal feedback controller is outlined, which guarantees a maximal value of the minimum performance index against all disturbances. Numerical results are presented for the optimal reentry maneuver of a hypersonic glider in the presence of uncertain air density.


Optimal control problems uncertainties differential games feedback controller space-shuttle reentry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BB91]
    Başar, T. and Bernhard, P. : H∞-Optimal Control and Related Minimax Design Problems. Birkhäuser, Boston, 1991.Google Scholar
  2. [BO82]
    Başar, T. and Olsder, G. J. : Dynamic Noncooperative Game Theory. Academic Press, London, Great Britain, 1982.zbMATHGoogle Scholar
  3. [BS91]
    Bardi, M. and Sartori, C. : Differential Games and totally risk-averse optimal control of systems with small disturbances. Lecture Notes in Control and Information Sciences 156, Springer , Berlin, 1991.Google Scholar
  4. [BP93]
    Breitner, M. H. and Pesch H. J. : Reentry Trajectory Optimization under Atmospheric Uncertainty as a Differential Game. In : Annals of the ISDG, Vol. 1, Advances in Dynamic Games and Applications, ed. by Başar, T. and Haurie, A. . Birkäuser Boston, Basel, Berlin, 1993.Google Scholar
  5. [BPG93]
    Breitner, M. H. , Pesch, H. J. and Grimm, W. : Complex Differential Games of Pursuit-Evasion Type with State Constraints, Part 1: Necessary Conditions for Optimal Open-Loop Strategies, Part 2: Numerical Computation of Optimal Open-Loop Strategies. To appear in JOTA, autumn 1993.Google Scholar
  6. [BR94]
    Breitner, M. H. : Real-Time Applicable Feedback Controller for Differential Games. In preparation for : Proceedings of the Sixth International Symposium on Dynamic Games and Applications, St-Jovite, Québec, Canada, July 13–15, 1994.Google Scholar
  7. [BU71]
    Bulirsch, R. : Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report of the Carl-Cranz Gesellschaft, Oberpfaffenhofen, Germany, 1971. Reprint: Department of Mathematics, Munich University of Technology, Germany, 1993.Google Scholar
  8. [BH75]
    Bryson, A. E. and Ho, Y.-C. : Applied Optimal Control. Hemisphere Publ. Corp., New York, 1975.Google Scholar
  9. [HI93]
    Hiltmann, P. : Numerische Lösung von Mehrpunkt-Randwertproblemen und Aufgaben der optimalen Steuerung mit Steuerfunktionen über endlichdimensionalen Räumen. Doctoral Thesis, Report No. 448 of the “Schwerpunkt Anwen-dungsbezogene Optimierung und Steuerung” of the Deutsche Forschungsgemeinschaft, München, Germany, 1993.Google Scholar
  10. [IS65]
    Isaacs, R. : Differential Games. Wiley, New York, 1965.zbMATHGoogle Scholar
  11. [KP90]
    Kugelmann, B. and Pesch, H. J. : A New General Guidance Method in Constrained Optimal Control, Part 1: The Numerical Method, Part 2: Application to Space Shuttle Guidance. JOTA, Vol. 67 (3), 1990.Google Scholar
  12. [LE89]
    Leitmann, G. : Deterministic Control of Uncertain Systems Via a Constructive Use of Lyapunov Stability Theory. Lecture Notes in Control and Information Sciences 143, Springer, Berlin, 1989.Google Scholar
  13. [PE89]
    Pesch, H. J. : Real-time Computation of Feedback Controls for Constrained Optimal Control Problems, Part 1: Neighbouring Extremals, Part 2: A Correction Method Based on Multiple Shooting. OCAM, Vol. 10, pp. 129–145, 1989.MathSciNetzbMATHGoogle Scholar
  14. [SB93]
    Stoer, J. and Bulirsch, R. : Introduction to Numerical Analysis. Springer, New York, Berlin, Heidelberg, 19933.zbMATHGoogle Scholar
  15. [SB92]
    Stryk, O. von and Bulirsch, R. : Direct and Indirect Methods for Trajectory Optimization. Annals of Operations Research, Vol. 37, pp. 357–373, 1992.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • Michael H. Breitner
    • 1
  1. 1.Mathematisches InstitutTechnische Universität MünchenMünchenGermany

Personalised recommendations