An SQP-type Solution Method for Constrained Discrete-Time Optimal Control Problems

  • E. Arnold
  • H. Puta
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 115)


The considered nonlinear, constrained discrete-time optimal control problem is stated as follows:
$$ J = F({x^N}) + \sum\limits_{k = 0}^{N -1} {f_0^k} ({x^k},{u^k}) \to Min $$
subject to the state equation:
$$ {x^{k + 1}} = {f^k}({x^k},{u^k}),k = 0, \ldots ,N -1, $$
and inequality constraints:
$$ \begin{gathered} {{c}^{k}}({{x}^{k}},{{u}^{k}}) \leqslant 0,\quad k = 0, \ldots ,N - 1,{\kern 1pt} \hfill \\ {\kern 1pt} {{c}^{N}}({{x}^{N}}) \leqslant 0, \hfill \\ {{f}^{k}}:{{{\text{R}}}^{n}} \times {{{\text{R}}}^{m}} \to {{{\text{R}}}^{n}},{{c}^{k}}:{{{\text{R}}}^{n}} \times {{{\text{R}}}^{m}} \to {{{\text{R}}}^{{{{r}^{k}}}}} \hfill \\ \end{gathered} $$
with sufficiently smooth functions F, ƒ 0 k , ƒ k , c k . The constraints include fixed initial or final states as well as bounds for state and control variables or more general constraints.


Constrained optimal control discrete-time systems structured nonlinear programming hydroelectric power-station systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ATW94]
    E. Arnold, P. Tatjewski, and P. Wolochowicz. Two methods for large scale nonlinear optimization problems and their comparison on a case study example of hydropower optimization. To appear in JOTA, 1994.Google Scholar
  2. [Ber82]
    D. P. Bertsekas. Projected Newton methods for optimization problems with simple constraints. SIAM J. Control and Optimization, 20(2):221–246, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Fle81]
    R. Fletcher. Practical methods of optimization, Vol. 2: Constrained optimization. Wiley, 1981.zbMATHGoogle Scholar
  4. [GJ84]
    T. Glad and H. Jonson. A method for state and control constrained linear quadratic problems. In 9th World Congress of IFAC, volume 9, pages 229–233, 1984.Google Scholar
  5. [LH74]
    C.L. Lawson and R.J. Hanson. Solving least squares problems. Prentice Hall, 1974.zbMATHGoogle Scholar
  6. [MY84]
    D. M. Murray and S. J. Yakowitz. Differential dynamic programming and Newton’s method for discrete optimal control problems. JOTA, 43(3):395–414, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Pow78]
    M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calculations. In G.A. Watson, editor, Numerical analysis, Dundee 1977. Springer Verlag, 1978.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • E. Arnold
    • 1
  • H. Puta
    • 1
  1. 1.Institut für Automatisierungs-und SystemtechnikTechnische Universität IlmenauIlmenauGermany

Personalised recommendations