Skip to main content

Reactive oxygen species and the regulation of metalloproteinase expression

  • Chapter
Free Radicals and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 139 Accesses

Abstract

Irreparable degradation of articular cartilage is a characteristic feature of arthritic diseases and much of this degradation occurs as a result of increased levels of matrix metalloproteinases (MMPs) such as collagenase and stromelysin [1-6]. The elevated levels of degradative enzymes are due to increased synthesis by cells in joint tissue such as chondrocytes and synoviocytes, as well as invading cells, such as macrophages and neutrophils [7-9]. Thus, depending on the type of joint disease, several cell types may be involved in promoting cartilage destruction. In osteoarthritic cartilage, there is a marked depletion of matrix around the chondrocyte suggesting that this cell plays a key role in cartilage degradation. In inflammatory arthritis, both resident cells, synoviocytes and chondrocytes, as well as invading inflammatory cells are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howell DS (1986) Pathogenesis of osteoarthritis. Am J Med 80 (suppl 4B): 24–28

    Article  PubMed  CAS  Google Scholar 

  2. Pujol JP, Loyau G (1987) Interleukin-1 and osteoarthritis. Life Sci 41: 1187–1198

    Article  PubMed  CAS  Google Scholar 

  3. Shinmei M, Okada Y, Masuda K, Naramatsu M, Kikuchi T, Harigai M, Shimomura Y (1990) The mechanism of cartilage degradation in osteoarthritic joints. Semin Arthritis Rheum 19 (suppl 1): 16–20

    Article  PubMed  CAS  Google Scholar 

  4. Pelletier J-P, Mineau F, Faure M-P, Martel-Pelletier J (1990) Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum 33: 1466–1476

    Article  PubMed  CAS  Google Scholar 

  5. Woessner JF Jr, Gunja-Smith Z (1991) Role of metalloproteinases in human osteoarthritis. J Rheumatol 18 (suppl 27): 99–101

    Google Scholar 

  6. Vincenti MP, Clark IM, Brinckerhoff CE (1994) Using inhibitors of metalloproteinases to treat arthritis. Easier said than done? Arthritis Rheum 37: 1115–1126

    Article  PubMed  CAS  Google Scholar 

  7. Konttinen YT, Honkanen VEA (1988) Future trends in the treatment of rheumatoid arthritis in the light of current etiopathogenetic theories Scand. J Rheumatol 74: 7–17

    CAS  Google Scholar 

  8. Shiozawa S, Shiozawa K (1988) A review of the histopathological evidence on the pathogenesis of cartilage destruction in rheumatoid arthritis Scand. J Rheumatol 74: 65–72

    CAS  Google Scholar 

  9. Arend WP, Dayer J-M (1990) Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 33: 305–315

    Article  PubMed  CAS  Google Scholar 

  10. Gowen M, Wood DD, Ihrie EJ, McGuire MKB, Russell RGG (1983) An interleukin-1like factor stimulates bone resorption in vitro. Nature 306: 378–380

    Article  CAS  Google Scholar 

  11. Kandel RA, Pritzker K, Mills G, Cruz TF (1990) Fetal bovine serum inhibits collagenase production in chondrocyte cultures: Interleukin-1 reverses this effect. Biochim Biophys Acta 1053: 130–134

    Article  PubMed  CAS  Google Scholar 

  12. Kandel RA, Petelycky M, Dinarello CA, Minden M, Pritzker KPH, Cruz TF (1990) Comparison of the effect of interleukin-6 and interleukin-1 on collagenase and proteoglycan production by chondrocytes. J Rheumatol 17: 953–957

    PubMed  CAS  Google Scholar 

  13. Verschure PJ, Van Noorden CJ (1990) The effects of interleukin-1 on articular cartilage destruction as observed in arthritic diseases, and its therapeutic control. Clin Exp Rheumatol 8:303–313

    PubMed  CAS  Google Scholar 

  14. Amer EC, Pratta MA (1989) Independent effects of interleukin-1 on proteoglycan breakdown, proteoglycan synthesis, and prostaglandin E2 release from cartilage in organ culture. Arthritis Rheum 32: 288–297

    Article  Google Scholar 

  15. Morales TI, Hascall VC (1989) Effects of interleukin-1 and lipopolysaccharides on pro-tein and carbohydrate metabolism in bovine articular cartilage organ cultures. Connect Tissue Res 19: 255–275

    Article  PubMed  CAS  Google Scholar 

  16. Martel-Pelletier J, Zafarullah M, Kodama S, Pelletier J-P (1991) In vitro effects of interleukin 1 on the synthesis of metalloproteases, TIMP, plasminogen activators and inhibitors in human articular cartilage. J Rheumatol 18 (suppl 27): 80–84

    Google Scholar 

  17. Dingle JT, Page Thomas DP, King B, Bard DR (1987) In vivo studies of articular tissue damage mediated by catabolin/interleukin 1. Ann Rheum Dis 46: 527–533

    Article  PubMed  CAS  Google Scholar 

  18. Staite ND, Richard KA, Aspar DG, Franz KA, Galinet LA, Dunn CJ (1990) Induction of an acute erosive monarticular arthritis in mice by interleukin-1 and methylated bovine serum albumin. Arthritis Rheum 33: 253–260

    Article  PubMed  CAS  Google Scholar 

  19. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483–16486

    PubMed  CAS  Google Scholar 

  20. Lo YYC, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270: 11727–11730

    Article  PubMed  CAS  Google Scholar 

  21. Lo YYC, Wong JMS, Cruz TF (1996) Reactive oxygen species mediate cytokine activation of c-Jun NI-12-terminal kinases. J Biol Chem 271: 15703–15707

    Article  PubMed  CAS  Google Scholar 

  22. Lo YYC, Conquer JA, Grinstein S, Cruz TF (1998) Interleukin-113 induction of c-fos and collagenase expression in articular chondrocytes: Involvement of reactive oxygen species. J Cell Biochem 69: 19–29

    Article  PubMed  CAS  Google Scholar 

  23. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5: 2145–2154

    PubMed  CAS  Google Scholar 

  24. Kleiner DE Jr, Stetler-Stevenson WG (1993) Structural biochemistry and activation of matrix metalloproteases. Curr Opin Cell Biol 5: 891–897

    Article  PubMed  CAS  Google Scholar 

  25. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97: 761–768

    Article  PubMed  CAS  Google Scholar 

  26. Dean DD, Azzo W, Martel-Pelletier J, Pelletier JP, Woessner JF Jr (1987) Levels of metalloproteases and tissue inhibitor of metalloproteases in human osteoarthritic cartilage. J Rheumatol 14: 43–51

    PubMed  CAS  Google Scholar 

  27. Brinckerhoff CE (1991) Joint destruction in arthritis: Metalloproteinases in the spotlight. Arthritis Rheum 34: 1073–1075

    Article  PubMed  CAS  Google Scholar 

  28. Gravallese EM, Darling JM, Ladd L, Katz JN, Gilmcher LH (1991) In situ hybridization studies of stromelysin and collagenase messenger RNA expression in rheumatoid synovium. Arthritis Rheum 34: 1076–1084

    Article  PubMed  CAS  Google Scholar 

  29. Clark IM, Powell LK, Ramsey S, Hazelman BL, Cawston TE (1993) The measurement of collagenase, tissue inhibitor of metalloproteinases (TIMP), and collagenase-TIMP complex in synovial fluids from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 36: 372–379

    Article  PubMed  CAS  Google Scholar 

  30. Lohmander LS, Hoerrner LA, Lark MW (1993) Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum 36: 181–189

    Article  PubMed  CAS  Google Scholar 

  31. Wolfe GC, MacNaul KL, Buechel FF, McDonnell J, Hoerrner LA, Lark MW, Moore VL, Hutchinson NI (1993) Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Arthritis Rheum 36: 1540–1547

    Article  PubMed  CAS  Google Scholar 

  32. Wernicke D, Seyfert C, Hinzmann B, Gromnica-Ihle E (1996) Cloning of collagenase 3 from the synovial membrane and its expression in rheumatoid arthritis and osteoarthritis. J Rheumatol 23: 590–595

    PubMed  CAS  Google Scholar 

  33. Moldovan F, Pelletier JP, Hambor J, Cloutier JM, Martel-Pelletier J (1997) Collagenase3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritis cartilage in situ: in vitro mimicking effect by transforming growth factor beta. Arthritis Rheum 40: 1653–1661

    Article  PubMed  CAS  Google Scholar 

  34. Borden P, Heller RA (1997) Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Grit Rev Eukaryot Gene Expr 7: 159–178

    Article  CAS  Google Scholar 

  35. Gaire M, Magbanua Z, McDonnell S, McNeil L, Lovett DH, Martrisian LM (1994) Structure and expression of the human gene for the matrix metalloproteinase matrilysin. J Biol Chem 269: 2032–2040

    PubMed  CAS  Google Scholar 

  36. Schorpp M, Mattei MG, Herr I, Gack S, Schaper J, Angel P (1995) Structural organization and chromosomal localization of the mouse collagenase type I gene. Biochem J 308: 211–217

    PubMed  CAS  Google Scholar 

  37. Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P, Heller RA (1996) Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 271: 23577–23581

    Article  PubMed  CAS  Google Scholar 

  38. Tardif G, Pelletier JP, Dupuis M, Hambor JE, Martel-Pelletier J (1997) Cloning, sequencing and characterization of the 5’-flanking region of the human collagenase-3 gene. Biochem J 323: 13–16

    PubMed  CAS  Google Scholar 

  39. Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49: 729–739

    Article  PubMed  CAS  Google Scholar 

  40. Buttice G, Quinones S, Kurkinen M (1991) The AP-1 site is required for basal expression but is not necessary for TPA-response of the human stromelysin gene. Nucleic Acids Res 19: 3723–3731

    Article  PubMed  CAS  Google Scholar 

  41. Schonthal A, Herrlich P, Rahmsdorf HJ, Ponta H (1988) Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell 54: 325–334

    Article  PubMed  CAS  Google Scholar 

  42. Marshall-Heyman H, Engel G, Ljungdahl S, Shoshan MC, Svensson C, Wasylyk B, Linder S (1994) Tumorigenic and metastatic properties of two ras-oncogene transfected rat fibrosarcoma cell lines defective in c-jun. Oncogene 9: 3655–3663

    PubMed  CAS  Google Scholar 

  43. Gutman A, Wasylyk B (1990) The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J 9: 2241–2246

    PubMed  CAS  Google Scholar 

  44. Auble DT, Brinckerhoff CE (1991) The AP-1 sequence is necessary but not sufficient for phorbol ester induction of collagenase in fibroblasts. Biochemistry 30: 4629–4635

    Article  PubMed  CAS  Google Scholar 

  45. Buttice G, Kurkinen M (1993) A polyomavirus enhancer A-binding protein-3 site and Ets-2 protein have a major role in the 12–0-tetradecanoyl phorbol-13-acetate response of the human stromelysin gene. J Biol Chem 268: 7196–7204

    PubMed  CAS  Google Scholar 

  46. Chamberlain SH, Hemmer RM, Brinckerhoff CE (1993) Novel phorbol ester response region in the collagenase promoter binds Fos and Jun. J Cell Biochem 52: 337–351

    Article  PubMed  CAS  Google Scholar 

  47. Stein B, Baldwin AS Jr, Ballard DW, Greene WCI, Angel P, Herrich P (1993) Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12: 3879–3891

    PubMed  CAS  Google Scholar 

  48. Fischer AB (1988) Intracellular production of oxygen derived free radicals. In: B Halliwell (ed): Oxygen radicals and tissue injury. The Upjohn Co, Bethesda, MD, 34–42

    Google Scholar 

  49. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd ed. Clarendon Press, Oxford

    Google Scholar 

  50. Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, Cook J, Pacelli R, Liebmann J, Krishna M, Ford PC, Mitchell JB (1996) Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cellu Regul 34: 159–187

    Article  CAS  Google Scholar 

  51. Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73: 599–601

    Article  PubMed  CAS  Google Scholar 

  52. Bellavite P (1988) The superoxide forming enzymatic system of phagocytes. Free Rad Biol Med 4: 225–261

    Article  PubMed  CAS  Google Scholar 

  53. Bokoch GM (1994) Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr Opin Cell Biol 6: 212–218

    Article  PubMed  CAS  Google Scholar 

  54. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141–1148

    Article  PubMed  CAS  Google Scholar 

  55. Jones SA, Wood JD, Coffey MJ, Jones OTG (1994) The functional expression of p47phox and p67-phox may contribute to the generation of superoxide by an NADPH oxidase-like system in human fibroblasts. FEBS Lett 355: 178–182

    Article  PubMed  CAS  Google Scholar 

  56. Thannickal VJ, Fanburg BL (1995) Activation of an H202-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270: 30334–30338

    Article  PubMed  CAS  Google Scholar 

  57. Buettner GR, Chamulitrat W (1990) The catalytic activity of iron in synovial fluid as monitored by the ascorbate free radical. Free Rad Biol Med 8: 55–56

    Article  PubMed  CAS  Google Scholar 

  58. Blake DR, Merry P, Kidd BL, Unsworth J, Outhwaite JM, Ballard R, Morris CJ, Gray L, Lunec J (1989) Hypoxic-reperfusion injury in the inflamed human joint. Lancet 1: 289–293

    Article  PubMed  CAS  Google Scholar 

  59. Sies H (1993) Oxidative stress: oxidants and antioxidants. Exp Physiol 82: 291–295

    Google Scholar 

  60. Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M, McCornkey B (1991) Chain breaking antioxidant status in rheumatoid arthritis: clinical and laboratory correlates. Ann Rheum Dis 50: 81–86

    Article  PubMed  CAS  Google Scholar 

  61. Greenwald RA, Moy WW (1979) Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheum 22: 251–259

    Article  PubMed  CAS  Google Scholar 

  62. Greenwald RA, Moy WW (1980) Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum 23: 455–463

    Article  PubMed  CAS  Google Scholar 

  63. Kowanko IC, Bates EJ, Ferrante A (1989) Mechanisms of human neutrophil mediated cartilage damage in vitro: the role of lysosomal enzymes, hydrogen peroxide and hypochlorous acid. Immunol Cell Biol 67: 321–329

    Article  PubMed  CAS  Google Scholar 

  64. Roberts CR, Roughley PJ, Mort JS (1989) Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Biochem J 259: 805–811

    PubMed  CAS  Google Scholar 

  65. Bates EJ, Johnson CC, Lowther DA (1985) Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochem Biophys Acta 838: 221–228

    Article  PubMed  CAS  Google Scholar 

  66. Bates EJ, Lowther DA, Johnson CC (1985) Hyaluronic acid synthesis in articular cartilage: an inhibition by hydrogen peroxide. Biochem Biophys Res Commun 132: 714–720

    Article  PubMed  CAS  Google Scholar 

  67. Schalwijk J, van den Berg WB, van de Putte LB, Joosten LAB (1985) Hydrogen peroxide suppresses the proteoglycan synthesis of intact articular cartilage. J Rheumatol 12: 205–210

    Google Scholar 

  68. Saari H, Sorsa T, Lindy O, Suomalainen K, Halmen S, Konttinen YT (1992) Reactive oxygen species as a regulator of human neutrophil and fibroblast interstitial collagenases. Int J Tissue React 14: 113–120

    PubMed  CAS  Google Scholar 

  69. Murrell GAC, Dolan MM, Jang D, Szabo C, Warren RF, Hannafin JA (1996) Nitric oxide - an important articular free radical. J Bone Joint Surg (Am) 78: 265–274

    CAS  Google Scholar 

  70. Stefanovic-Racic M, Meyers K, Meschter C, Coffey J W, Hoffman RA, Evans CH (1994) N-monomethyl arginine, an inhibitor of nitric oxide synthase, suppresses the development of adjuvant arthritis in rats. Arthritis Rheum 37: 1062–1069

    Article  PubMed  CAS  Google Scholar 

  71. Ueki Y, Miyake S, Tominaga Y, Eguchi K (1996) Increased nitric oxide levels in patients with rheumatoid arthritis. J Rheumatol 23: 230–236

    PubMed  CAS  Google Scholar 

  72. Hauselmann HJ, Oppliger L, Michel BA, Stefanovic-Racic M, Evans CH (1994) Nitric oxide and proteoglycan biosynthesis by human articular chondrocytes in alginate culture. FEBS Lett 352: 361–364

    Article  PubMed  CAS  Google Scholar 

  73. Jarvinen TAH, Moilanen T, Jarvinen TLN, Moilanen E (1995) Nitric oxide mediates interleukin-1 induced inhibition of glycosaminoglycan synthesis in rat articular cartilage. Mediat In flamm 4: 107–111

    Article  CAS  Google Scholar 

  74. Blanco FJ, Lotz M (1995) IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2. Exp Cell Res 218: 319–325

    Article  PubMed  CAS  Google Scholar 

  75. Murrell GAC, Jang D, Williams RJ (1995) Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun 206: 15–21

    Article  PubMed  CAS  Google Scholar 

  76. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265: 659–665

    PubMed  CAS  Google Scholar 

  77. Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70: 593–599

    Article  PubMed  CAS  Google Scholar 

  78. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Rquirement for generation of H202 for platelet-derived growth factor signal transduction. Science 270: 296–299

    Article  PubMed  CAS  Google Scholar 

  79. Iwasaki Y, Matsubara T, Hirohata K (1988) A mechanism of cartilage destruction in immunologically-mediated inflammation: increased superoxide anion release from chondrocytes in response to interleukin-1 and interferons. Orthop Trans 12: 438–444

    Google Scholar 

  80. Rathakrishnan C, Tiku K, Raghavan A, Tiku ML (1992) Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion. J Bone Miner Res 7: 1139–1148

    Article  PubMed  CAS  Google Scholar 

  81. Tawara T, Shingu M, Nobunaga M, Naono T (1991) Effects of recombinant human IL-113 on production of prostaglandin E2, leukotriene B4, NAG and superoxide by human synovial cells and chondrocytes. Inflammation 15: 145–157

    Article  PubMed  CAS  Google Scholar 

  82. Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA (1992) Dithio-carbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175: 1181–1194

    Article  PubMed  CAS  Google Scholar 

  83. Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Rad Res Comms 17: 221–237

    Article  CAS  Google Scholar 

  84. Kaul N, Forman HJ (1996) Activation of NF kappa B by the respiratory burst of macrophages. Free Rad Biol Med 21: 401–405

    Article  PubMed  CAS  Google Scholar 

  85. Stamler JS (1994) Redox signaling: Nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936

    Article  PubMed  CAS  Google Scholar 

  86. Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11: 118–124

    PubMed  CAS  Google Scholar 

  87. Price MA, Hill C, Treisman R (1996) Integration of growth factor signals at the c-fos serum response element. Phil Trans Royal Soc Lond-Series B: Biological Sciences 351: 551–559

    Article  CAS  Google Scholar 

  88. Price MA, Cruzalegui FH, Treisman R (1996) The p38 and ERK Map kinase pathways cooperate to activate ternary complex factors and c-fos transcription in response to UV light. EMBO J 15: 6552–6563

    CAS  Google Scholar 

  89. Fialkow L, Chan CK, Rotin D, Grinstein S, Downey GP (1994) Activation of the mitogen-activated protein kinase signaling pathway in neutrophils. J Biol Chem 269: 31234–31242

    PubMed  CAS  Google Scholar 

  90. Stevenson MA, Pollock SS, Coleman CN, Calderwood SK (1994) X-irradiation, phorbol esters and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res 54: 12–15

    PubMed  CAS  Google Scholar 

  91. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2 Role in cell survival following oxidant injury. J Biol Chem 271: 4138–4142

    Article  PubMed  CAS  Google Scholar 

  92. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160

    Article  PubMed  CAS  Google Scholar 

  93. Denhardt DT (1996) Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318: 729–747

    PubMed  CAS  Google Scholar 

  94. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ (1995) Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 403–407

    Article  PubMed  CAS  Google Scholar 

  95. Devary Y, Gottlieb RA, Lau LF, Karin M (1991) Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 11: 2804–2811

    PubMed  CAS  Google Scholar 

  96. van Dam H, Duyndam M, Rottier R, Bosch A, de Vries-Smits L, Herrlich P, Zantema A, Angel P, van der Eb AJ (1993) Hetreodimer formation of c-Jun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J 12: 479–487

    PubMed  Google Scholar 

  97. Wilhelm D, van Dam H, Herr I, Baumann B, Herrlich P, Angel P (1995) Both ATF-2 and c-Jun are phosphorylated by stress-activated protein kinases in response to UV irradiation. Immunobiol 193: 143–148

    Article  CAS  Google Scholar 

  98. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496

    Article  PubMed  CAS  Google Scholar 

  99. van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P, Angel P (1995) ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J 14: 1798–1811

    PubMed  Google Scholar 

  100. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16: 1247–1255

    PubMed  CAS  Google Scholar 

  101. Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, GoldschmidtClermont PJ, Finkel T (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Racl. Biochem J 318: 379–382

    PubMed  CAS  Google Scholar 

  102. Hecht D, Zick Y (1992) Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun 188: 773–779

    Article  PubMed  CAS  Google Scholar 

  103. Sullivan SG, Chiu DTY, Errasfa M, Wang JM, Qi JS, Stern A (1994) Effects of H2O2 on protein tyrosine phosphatase activity in HER 14 cells. Free Rad Biol Med 16: 399–403

    Article  PubMed  CAS  Google Scholar 

  104. Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A, Arkinstall S (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271: 27205–27208

    Article  PubMed  CAS  Google Scholar 

  105. Abate C, Patel L, Rauscher FJ III, Curran T (1990) Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249: 1157–1162

    Article  PubMed  CAS  Google Scholar 

  106. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11: 3323–3335

    PubMed  CAS  Google Scholar 

  107. Flohe L (1988) Superoxide dismutase for therapeutic use: clinical experience, dead ends and hopes. Mol Cell Biochem 84: 123–131

    Article  PubMed  CAS  Google Scholar 

  108. Mcllwain H, Silverfield JC, Cheatum DE, Poiley J, Taborn J, Ignaczak T, Multz CV (1989) Intra-articular orgotein in osteoarthritis of the knee: a placebo-controlled efficacy, safety and dosage comparison. Am J Med 87: 295–300

    Article  Google Scholar 

  109. Tardif JC, Cote G, Lesperance J, Bourassa M, Lambert J, Doucet S, Bilodeau L, Nattel S, de Guise P (1997) Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med 337: 365–372

    Article  PubMed  CAS  Google Scholar 

  110. Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P (1995) The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vaso-motion. N Engl J Med 332: 488–493

    Article  PubMed  CAS  Google Scholar 

  111. Soleas GJ, Diamandis EP, Goldberg DM (1997) Wine as a biological fluid: History, production, and role in disease prevention. J Clin Lab Anal 11: 287–313

    Article  PubMed  CAS  Google Scholar 

  112. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749–754

    Article  PubMed  CAS  Google Scholar 

  113. Stefanovic-Racic M, Stadler J, Georgescu HI, Evans CH (1994) Nitric oxide synthesis and its regulation by rabbit synoviocytes. J Rheumatol 21: 1892–1898

    PubMed  CAS  Google Scholar 

  114. De Flora S, Cesarone CF, Balansky RM, Albini A, D’Agostini F, Bennicelli C, Bagnasco M, Camoirano A, Scatolini L, Rovida A et al (1995) Chemopreventive properties and mechanisms of N-Acetylcysteine. The experimental background. J Cell Biochem 22: 33–41

    Article  Google Scholar 

  115. De Flora S, Grassi C, Carati L (1997) Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur Respir J 10: 1535–1541

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Lo, Y.Y.C., Wong, J.M.S., Cheung, WF., Cruz, T.F. (2000). Reactive oxygen species and the regulation of metalloproteinase expression. In: Winyard, P.G., Blake, D.R., Evans, C.H. (eds) Free Radicals and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8482-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8482-2_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9586-6

  • Online ISBN: 978-3-0348-8482-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics