Skip to main content

Abstract

Tumor necrosis factor-α (TNFα) has been implicated in cancer and inflammatory diseases since it was first characterized and eventually identified by researchers in several laboratories in the mid-1980s [1-5]. However, only recently has the patho-logical role of TNF in arthritis and Crohn’s disease been demonstrated in the clinic with the FDA’s approval of Enbrel and Remicade [6-8]. The recent success of these biological agents that neutralize TNF has led to intense efforts to find small molecule TNF antagonists that will mimic the consequences, if not the mechanism, of these agents. Because TNF interacts at multiple contact points with either of its two receptors, researchers have struggled to find small molecular weight inhibitors that antagonize this interaction. Therefore, most efforts have focused on targets upstream of TNF synthesis or secretion and downstream of TNF receptor engagement since these targets appear more amenable to modulation by small molecular weight inhibitors [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler B, Mahoney J, Nguyen LT, Pekala P, Cerami A (1985) Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 161: 984–995

    Article  PubMed  CAS  Google Scholar 

  2. Haranaka K, Carswell EA, Williamson BD, Prendergast JS, Satomi N, Old LJ (1986)Purification, characterization, and antitumor activity of non-recombinant mouse tumor necrosis factor. Proc Natl Acad Sci USA 83: 3949–3953

    Article  PubMed  Google Scholar 

  3. Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS, Nedwin GE, Goeddel DV, Harkins RN (1985) Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem 260: 2345–2354

    PubMed  CAS  Google Scholar 

  4. Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV (1985) Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc Natl Acad Sci USA 82: 6060–6064

    Article  PubMed  CAS  Google Scholar 

  5. Wang, AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, Yamamoto R, Mark DF (1985) Molecular cloning of the complementary DNA for human tumor necrosis factor. Science 228: 149–154

    Article  PubMed  CAS  Google Scholar 

  6. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, Ettlinger RE, Cohen S, Koopman WJ, Mohler K et al (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 337: 141–147

    Article  PubMed  CAS  Google Scholar 

  7. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340: 253–259

    Article  PubMed  CAS  Google Scholar 

  8. Targan SR, Hanauer S., Van Deventer SJH, Mayer L, Present DH, Braakman T, Dewoody KL, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric mono-clonal antibody cA2 to tumor necrosis factor a for Crohn’s disease. N Engl J Med 337: 1029–1035

    Article  PubMed  CAS  Google Scholar 

  9. Shire MG, Muller GW (1998) TNF-a inhibitors and rheumatoid arthritis. Expert Opin Ther Pat8: 531–544

    Article  CAS  Google Scholar 

  10. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Cast-ner BJ, Johnson RS, Fitzner JN et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282: 1281–1284

    Article  PubMed  CAS  Google Scholar 

  11. McGeehan GM, Becherer JD, Bast RC, Boyer CM, Champion B, Connolly K, Conway J, Furdon P, Karp S, Kidao S et al (1994) Regulation of tumor necrosis factor-a processing by a metalloproteinase inhibitor. Nature 370: 558–561

    Article  PubMed  CAS  Google Scholar 

  12. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Black RA (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. Nature 370: 218–221

    Article  PubMed  CAS  Google Scholar 

  13. Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R (1994) Processing of tumor necrosis factor-a precursor by metalloproteases. Nature 370: 555–558

    Article  PubMed  CAS  Google Scholar 

  14. Moss ML, Jin SC, Mulla ME, Burkhart W, Carter HL, Chen W., Clay WC, Didsbury JR, Hassler D, Hoffman CR et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumor necrosis factor-a. Nature 385: 733–736

    Article  PubMed  CAS  Google Scholar 

  15. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srunivasan S et al (1997) A metalloproteinase disintegrin that releases tumor necrosis factor-a from cells. Nature 385: 729–733

    Article  PubMed  CAS  Google Scholar 

  16. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354: 1–6

    Article  PubMed  CAS  Google Scholar 

  17. Blobel CP (1997) Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF-a and Notch. Cell 90: 589–592

    Article  PubMed  CAS  Google Scholar 

  18. Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321: 265–279

    PubMed  CAS  Google Scholar 

  19. Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10: 654–659

    Article  PubMed  CAS  Google Scholar 

  20. Brown AM, George SM, Blume AJ, Dushin RG, Jacobsen JS, Sonnenberg-Reines J (1994) Biotinylated and cysteine-modified peptides as useful reagents for studying the inhibition of cathepsin G. Anal Biochem 217: 139–147

    Article  PubMed  CAS  Google Scholar 

  21. Basak A, Boudreault A, Jean F, Chretien M, Lazure C (1993) Radiolabeled biotinyl peptides as useful reagents for the study of proteolytic enzymes. Anal Biochem 209 (2): 306–314

    Article  PubMed  CAS  Google Scholar 

  22. Baum EZ, Hohnston SH, Bebernitz GA, Gluzman Y (1996) Development of a scintillation proximity assay for human cytomegalovirus protease using 33Phosphorus. Anal Biochem 237: 129–134

    Article  PubMed  CAS  Google Scholar 

  23. Cook ND, Jessop RA, Robinson PS, Richards AD, Kay J (1991) Structure and function of the aspartic proteinases. In: BM Dunn (ed): Scintillation proximity enzyme assay: a rapid and novel assay technique applied to HIV proteinase. Plenum Press, London, 525–528

    Google Scholar 

  24. Jones AE, Saksela K, Game SM, O’Beirne G, Cook ND (1998) Screening assay for the detection of the protein-protein interaction between HIV-1 Nef protein and SH3 domain of Hck. J Biomolec Screening 3 (1): 37–41

    Article  CAS  Google Scholar 

  25. Pernelle C, Clerc FF, Dureuil C, Bracco L, Tocque B (1993) An efficient screening assay for the rapid and precise determination of affinities between leucine zipper domains. Biochemistry 32 (43): 11682–11687

    Article  Google Scholar 

  26. Nelson N (1987) A novel method for the detection of receptors and membrane proteins by scintillation proximity radioassay. Anal Biochem 165: 287–293

    Article  PubMed  CAS  Google Scholar 

  27. Nichols JS, Parks DJ, Consler TG, Blanchard SG (1998) Development of a scintillation proximity assay for peroxisome proliferator-activated receptor gamma ligand binding domain. Anal Biochem 257: 112–119

    Article  PubMed  CAS  Google Scholar 

  28. Cook ND (1996) Scintillation proximity assay: A versatile high-throughput screening technology. Drug Discovery Today 1 (7): 287–294

    Article  CAS  Google Scholar 

  29. Ziegler-Heitbrook HWL, Thiel E, Fuetter A, Herzog V, Wirtz A, Reithmueller G (1988) Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int J Cancer 41: 456–461

    Article  Google Scholar 

  30. Van Dyk DE, Marchand P, Bruckner RC, Fox JW., Jaffee BD, Gunyuzlu PL, Davis GL, Nurnberg S, Covington M, Decicco CP et al (1997) Comparison of snake venom reprolysin and matrix metalloproteinases as models of TNF-a converting enzyme. Bioorg Med Chem Lett 7:1219–1224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Leesnitzer, M.A., Bickett, D.M., Moss, M.L., Becherer, J.D. (2000). A high throughput assay for the TNF converting enzyme. In: Kahn, M. (eds) High Throughput Screening for Novel Anti-Inflammatories. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8462-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8462-4_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9578-1

  • Online ISBN: 978-3-0348-8462-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics