Skip to main content

Chemokines

  • Conference paper
  • 67 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The immune system is comprised of many cell types which constantly migrate. This characteristic is essential for the defense of the organism against foreign agents, and for reparative processes such as wound healing. Insufficient recruitment and activation of leukocytes leads to inefficient clearance of pathogens. Conversely, their over-activation or unregulated recruitment leads to pathological damage, such as that seen in ischemia-reperfusion conditions of the myocardium and brain, and in the joints of patients with rheumatoid arthritis. Unfortunately, these conditions are not yet satisfactorily treated. Thus, it would be highly desirable to develop therapeutic agents that interfere with unregulated trafficking and activation of leukocytes. To this end, it is necessary to understand the mechanisms associated with normal leukocyte physiology. This field has advanced considerably in the last two decades and a number of key molecular regulators have been identified. Among these are the chemokines, a large family of molecules that mediate trafficking and other physiological parameters of leukocyte biology (for review see Rollins [1] and Zlotnik et al. [2]). As of 1998, over 40 chemokine ligands and 15 different receptors have been identified, and it is estimated that many new molecules remain to be discovered. Originally identified as molecules capable of inducing chemotaxis in vitro, chemokines are currently being subjected to intense experimental scrutiny. A combination of approaches, including genetic techniques, have demonstrated that chemokines have functions relating not only to leukocyte trafficking, but also to angiogenesis, hematopoiesis and development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rollins BJ (1997) Chemokines. Blood 90: 909–928

    PubMed  CAS  Google Scholar 

  2. Zlotnik A, Morales J, Hedrick, JA (1999) Recent advances in chemokines and chemokine receptors. Critical Rev Immunol 19: 1–47

    CAS  Google Scholar 

  3. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270: 1811–1815

    Article  PubMed  CAS  Google Scholar 

  4. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, DiMarzio P, Marmon S, Sutton RE, Hill CM et al (1996) Identification of a major co-receptor for primary isolates of HIV. Nature 381: 661–666

    Article  PubMed  CAS  Google Scholar 

  5. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MlP-lalpha, MlP-lbeta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 1955–1958

    Article  PubMed  CAS  Google Scholar 

  6. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381: 667–673

    Article  PubMed  CAS  Google Scholar 

  7. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman R G, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158

    Article  PubMed  CAS  Google Scholar 

  8. Struyf S, De Meester I, Scharpe S, Lenaerts JP, Menten P, Wang JM, Proost P, Van Damme J (1998) Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur J Immunol 28: 1262–1271

    Article  PubMed  CAS  Google Scholar 

  9. Proost P, De Meester I, Schols D, Struyf S, Lambeir AM, Wuyts A, Opdenakker G, De Clercq E, Scharpe S, Van Damme J (1998) Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV Conversion of RANTES into a potent inhibitor of mono-cyte chemotaxis and HIV-1-infection. J Biol Chem 273: 7222–7227

    Article  PubMed  CAS  Google Scholar 

  10. Proudfoot AE, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, Offord RE, Wells TN (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271: 2599–2603

    Article  PubMed  CAS  Google Scholar 

  11. Eisner J, Petering H, Hochstetter R, Kimmig D, Wells TN, Kapp A, Proudfoot AE (1997) The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J Immunol 27: 2892–2898

    Article  Google Scholar 

  12. Plater-Zyberk C, Hoogewerf AJ, Proudfoot AE, Power CA, Wells TN (1997) Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol Lett 57: 117–120

    Article  PubMed  CAS  Google Scholar 

  13. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TNC, Proudfoot AE (1997) Potent inhibition of HIV-1 infectivity in macro-phages and lymphocytes by a novel CCR5 antagonist. Science 276: 276–279

    Article  PubMed  CAS  Google Scholar 

  14. Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F, Wells TN, Schlondorff D, Proudfoot AE (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187: 1215–1224

    Article  PubMed  CAS  Google Scholar 

  15. Sarafi MN, Garcia-Zepeda EA, MacLean JA, Charo IF, Luster AD (1997) Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J Exp Med 185: 99–109

    Article  PubMed  CAS  Google Scholar 

  16. Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, Megill JR, Bravo R, Lira SA (1995) Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 155: 5769–5776

    PubMed  CAS  Google Scholar 

  17. Lira SA, Fuentes ME, Strieter RM, Durham SK (1997) In: R Horuk (ed) Methods in Enzymology, vol 287, Academic Press, San Diego, 304–318

    Google Scholar 

  18. Gunn MD, Nelken NA, Liao X, Williams LT (1997) Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J Immunol 158: 376–383

    PubMed  CAS  Google Scholar 

  19. Grewal IS, Rutledge BJ, Fiorillo JA, Gu L, Gladue RP, Flavell RA, Rollins BJ (1997) Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. J Immunol 159, 401–408

    PubMed  CAS  Google Scholar 

  20. Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R, Gordillo G, Klenotic S, Orosz C, Parker-Thornburg J (1998) Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am J Pathol 152: 101–111

    PubMed  CAS  Google Scholar 

  21. Yamashiro S, Takeya M, Kuratsu J, Ushio Y, Takahashi K, Yoshimura T (1998) Intradermal injection of monocyte chemoattractant protein-1 induces emigration and differentiation of blood monocytes in rat skin. Int Arch Allergy Immunol 115: 15–23

    Article  PubMed  CAS  Google Scholar 

  22. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187: 601–608

    Article  PubMed  CAS  Google Scholar 

  23. Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 94: 12053–12058

    Article  PubMed  CAS  Google Scholar 

  24. Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186: 1757–1762

    Article  PubMed  CAS  Google Scholar 

  25. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF (1997) Impaired monocyte migration and reduced type 1 (Thl) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100: 2552–2561

    Article  PubMed  CAS  Google Scholar 

  26. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis [In Process Citation]. Nature 394: 894–897

    Article  PubMed  CAS  Google Scholar 

  27. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipopro-tein receptor-deficient mice. Mol Cell 2: 275–281

    Article  PubMed  CAS  Google Scholar 

  28. Gong JH, Ratkay LG, Waterfield JD, Clark-Lewis I (1997) An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 186: 131–137

    Article  PubMed  CAS  Google Scholar 

  29. Schrier DJ, Schimmer RC, Flory CM, Tung DK, Ward PA (1998) Role of chemokines and cytokines in a reactivation model of arthritis in rats induced by injection with strep-tococcal cell walls. J Leukoc Biol 63: 359–363

    PubMed  CAS  Google Scholar 

  30. Ogata H, Takeya M, Yoshimura T, Takagi K, Takahashi K (1997) The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J Pathol 182: 106–114

    Article  PubMed  CAS  Google Scholar 

  31. Fujinaka H, Yamamoto T, Takeya M, Feng L, Kawasaki K, Yaoita E, Kondo D, Wilson CB, Uchiyama M, Kihara I (1997) Suppression of anti-glomerular basement membrane nephritis by administration of anti-monocyte chemoattractant protein-1 antibody in WKY rats. J Am Soc Nephrol 8: 1174–1178

    PubMed  CAS  Google Scholar 

  32. Williams SL, Addison IE, Mollapour E, Czaplewski LG, Linch DC, Roberts PJ (1997) The effects of human macrophage inflammatory protein-1 alpha and its genetically modified variant, BB10010, on phagocyte function. Cytokines Cell Mol Ther 3: 41–50

    PubMed  CAS  Google Scholar 

  33. Broxmeyer HE, Orazi A, Hague NL, Sledge GW Jr, Rasmussen H, Gordon MS (1998) Myeloid progenitor cell proliferation and mobilization effects of BB10010, a genetically engineered variant of human macrophage inflammatory protein-1 alpha, in a phase I clinical trial in patients with relapsed/refractory breast cancer. Blood Cells Mol Dis 24: 14–30

    Article  PubMed  CAS  Google Scholar 

  34. Clemons MJ, Marshall E, Durig J, Watanabe K, Howell A, Miles D, Earl H, Kiernan J, Griffiths A, Towlson K, DeTakats P, Testa NG, Dougal M, Hunter MG, Wood LM, Czaplewski LG, Millar A, Dexter TM, Lord BI (1998) A randomized phase-II study of BB-10010 (macrophage inflammatory protein-1 alpha) in patients with advanced breast cancer receiving 5-fluorouracil, adriamycin, and cyclophosphamide chemotherapy. Blood 92: 1532–1540

    PubMed  CAS  Google Scholar 

  35. Patel VP, Kreider BL, Li Y, Li H, Leung K, Salcedo T, Nardelli B, Pippalla V, Gentz S, Thotakura R, Parmelee D, Gentz R, Garotta G (1997) Molecular and functional characterization of two novel human C-C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med 185: 1163–1172

    Article  PubMed  CAS  Google Scholar 

  36. Youn BS, Zhang SM, Broxmeyer HE, Cooper S, Antol K, Fraser M Jr, Kwon BS (1998) Characterization of CKbeta8 and CKbeta8-l: two alternatively spliced forms of human beta-chemokine, chemoattractants for neutrophils, monocytes, and lymphocytes, and potent agonists at CC chemokine receptor 1. Blood 91: 3118–3126

    PubMed  CAS  Google Scholar 

  37. Forssmann U, Delgado MB, Uguccioni M, Loetscher P, Garotta G, Baggiolini M (1997) CKbeta8, a novel CC chemokine that predominantly acts on monocytes. FEBS Lett 408: 211–216

    Article  PubMed  CAS  Google Scholar 

  38. Schulz-Knappe P, Magert HJ, Dewald B, Meyer M, Cetin Y, Kubbies M, Tomeczkowski J, Kirchhoff K, Raida M, Adermann K et al (1996) HCC-1, a novel chemokine from human plasma. J Exp Med 183: 295–299

    Article  PubMed  CAS  Google Scholar 

  39. Bacon KB, Oppenheim JJ (1998) Chemokines in disease models and pathogenesis [In Process Citation]. Cytokine Growth Factor Rev 9: 167–173

    Article  PubMed  CAS  Google Scholar 

  40. Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Luttichau HR, Gerstoft J, Clapham PR, Clark-Lewis I, Wells TNC, Schwartz TW (1997) A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus. Science 277: 1656–1659

    Article  PubMed  CAS  Google Scholar 

  41. Boshoff C, Endo Y, Collins PD, Takeuchi Y, Reeves JD, Schweickart VL, Siani MA, Sasaki T, Williams TJ, Gray PW, Moore PS, Chang Y, Weiss RA (1997) Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines [see comments]. Science 278: 290–294

    Article  PubMed  CAS  Google Scholar 

  42. Chen S, Bacon KB, Li L, Garcia GE, Xia Y, Lo D, Thompson DA, Siani MA, Yamamoto T, Harrison JK, Feng L (1998) in vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med 188: 193–198

    Article  PubMed  CAS  Google Scholar 

  43. Sozzani S, Luini W, Bianchi G, Allavena P, Wells TN, Napolitano M, Bernardini G, Vecchi A, D’Ambrosio D, Mazzeo D, Sinigaglia F, Santoni A, Maggi E, Romagnani S, Mantovani A (1998) The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant [In Process Citation]. Blood 92: 4036–4039

    PubMed  CAS  Google Scholar 

  44. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM (1998) Identification of a potent selective, non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273: 10095–10098

    Article  PubMed  CAS  Google Scholar 

  45. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor [see comments]. Science 272: 872–877

    Article  PubMed  CAS  Google Scholar 

  46. Berson JF, Long D, Doranz BJ, Rucker J, Jirik FR, Doms RW (1996) A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol 70: 6288–6295

    PubMed  CAS  Google Scholar 

  47. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85: 1135–1148

    Article  PubMed  CAS  Google Scholar 

  48. Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E (1997) Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 186: 1383–1388

    Article  PubMed  CAS  Google Scholar 

  49. Doranz BJ, Grovit-Ferbas K, Sharron MP, Mao SH, Goetz MB, Daar ES, Doms RW, O’Brien WA (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med 186: 1395–1400

    Article  PubMed  CAS  Google Scholar 

  50. Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H, Yoshida N, Waki M, Matsumoto A, Yoshie O, Kishimoto T, Yamamoto N, Nagasawa T (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-l infection. J Exp Med 186: 1389–1393

    Article  PubMed  CAS  Google Scholar 

  51. Howard OM, Oppenheim JJ, Hollingshead MG, Covey JM, Bigelow J, McCormack JJ, Buckheit RW Jr, Clanton DJ, Turpin JA, Rice WG (1998) Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: a candidate for chemotherapeutic and microbicidal application. J Med Chem 41: 2184–2193

    Article  PubMed  CAS  Google Scholar 

  52. Howard OM, Korte T, Tarasova NI, Grimm M, Turpin JA, Rice WG, Michejda CJ, Blumenthal R, Oppenheim JJ (1998) Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. J Leukoc Biol 64: 6–13

    PubMed  CAS  Google Scholar 

  53. De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K, Debyser Z, Rosenwirth B, Peichl P, Datema R et al (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 38: 668–674

    Article  PubMed  Google Scholar 

  54. Datema R, Rabin L, Hincenbergs M, Moreno MB, Warren S, Linquist V, Rosenwirth B, Seifert J, McCune JM (1996) Antiviral efficacy in vivo of the anti-human immunodeficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry. Antimicrob Agents Chemother 40: 750–754

    PubMed  CAS  Google Scholar 

  55. Labrosse B, Brelot A, Heveker N, Sol N, Schols D, De Clercq E, Alizon M (1998) Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 72: 6381–6388

    PubMed  CAS  Google Scholar 

  56. Morimoto M, Mori H, Otake T, Ueba N, Kunita N, Niwa M, Murakami T, Iwanaga S (1991) Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro. Chemotherapy 37: 206–211

    Article  PubMed  CAS  Google Scholar 

  57. Nakashima H, Masuda M, Murakami T, Koyanagi Y, Matsumoto A, Fujii N, Yamamoto N (1992) Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-512, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimi-crob Agents Chemotber 36: 1249–1255

    Article  CAS  Google Scholar 

  58. Howard OM, Ben-Baruch A, Oppenheim JJ (1996) Chemokines: progress toward identifying molecular targets for therapeutic agents. Trends Biotecbnol 14: 46–51

    Article  CAS  Google Scholar 

  59. Clanton DJ, Buckheit RW Jr, Terpening SJ, Kiser R, Mongelli N, Borgia AL, Schultz R, Narayanan V, Bader JP, Rice WG (1995) Novel sulfonated and phosphonated analogs of distamycin which inhibit the replication of HIV. Antiviral Res 27: 335–354

    Article  PubMed  CAS  Google Scholar 

  60. Hesselgesser J, Ng HP, Liang M, Zheng W, May K, Bauman JG, Monahan S, Islam I, Wei GP, Ghannam A, Taub DD, Rosser M, Snider RM, Morrissey MM, Perez HD, Horuk R (1998) Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem 273: 15687–15692

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Lira, S.A., Zavodny, P.J., Lundell, D. (2000). Chemokines. In: Narula, S.K., Coffman, R. (eds) New Cytokines as Potential Drugs. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8456-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8456-3_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9575-0

  • Online ISBN: 978-3-0348-8456-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics