Skip to main content

Towards a Theory of Internal Conversion: The Beta Line-Spectrum, 1927–1934

  • Chapter
Book cover Controversy and Consensus: Nuclear Beta Decay 1911–1934

Part of the book series: Science Networks · Historical Studies ((SNHS,volume 24))

  • 279 Accesses

Abstract

The thorough discussions of the anomalous continuity in energy of the primary beta particles in the wake of the Ellis-Wooster experiment thrust the beta linespectrum into the background for some time. Yet, especially in Cambridge, great efforts were made to obtain a better understanding of the line spectrum. In this chapter, we shall see how this work led to a satisfactory quantum theory of internal conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Ellis, “The Relative Intensities of the Groups in the Magnetic β-Ray Spectra of Radium B and Radium C,” Proc. Roy. Soc. A117 (1927), 276–288, p. 285.

    Google Scholar 

  2. E. Rutherford and A.B. Wood, “Long-Range Alpha Particles from Thorium,” Phil. Mag. 31 (1916), 379–386.

    Article  Google Scholar 

  3. L. Meitner and K. Freitag, “Über die α-Strahlen des ThC + C’ und ihr Verhalten beim Durchgang durch verschiedene Gase,” Z. Phys. 37 (1916), 481–517.

    ADS  Google Scholar 

  4. E. Rutherford, “Collision of a Particles with Light Atoms,” Phil. Mag. 37 (1919), 537–587.

    Article  Google Scholar 

  5. See, for example, L.F. Bates and J.S. Rogers, “Particles of Long Range Emitted by the Active Deposits of Radium, Thorium, and Actinium,” Proc. Roy. Soc. A105 (1924), 97–116; K. Philipp, “α-Teilchen grosser Reichweite beim Thorium,” Naturwiss. 12 (1924), 511; N. Yamada, “Sur les particules de long parcours du polonium,” C.R. 180 (1925), 436–439; idem. “Sur les particules de long parcours émises par les dépôt actif du thorium,” C.R. 180 (1925), 1591–1594; idem., “Sur les particules de long parcours émises par le dépôt actif du radium,” C.R. 181 (1925), 176–178; M.P. Mercier, “Sur les particules de long parcours émises par le dépôt actif B+C de l’actinium,” C.R. 183 (1926), 962–964.

    Google Scholar 

  6. E. Rutherford, “Bakerian Lecture: Nuclear Constitution of Atoms,” Proc. Roy. Soc. A97 (1920), 374–400.

    ADS  Google Scholar 

  7. E. Rutherford, “The Mass of the Long-Range Particles from Thorium C,” Phil. Mag. 41 (1921), 570–574.

    Article  Google Scholar 

  8. E. Rutherford, F.A.B. Ward, and C.E. Wynn-Williams, “A New Method of Analysis of Groups of Alpha-Rays. - (1) The Alpha-Rays from Radium C, Thorium C, and Actinium C,” Proc. Roy. Soc. Al29 (1930), 211–234.

    Google Scholar 

  9. E. Rutherford, F.A.B. Ward, and W.B. Lewis, “Analysis of the Long Range a-Particles from Radium C,” Proc. Roy. Soc. A131 (1931), 684–703, p. 702.

    Google Scholar 

  10. S. Rosenblum, “Structure fine du spectre magnétique des rayons α,” C.R. 190 (1930), 11241127; idem., “Progrès récents dans l’étude du spectre magnétique des rayons α,” J. de Phys. 12 (1930), 438–444.

    Google Scholar 

  11. Kramers to Bohr, 18 June 1930, BSC (22.3). The translation is my own.

    Google Scholar 

  12. E. Rutherford and C.D. Ellis, “The Origin of the β-Rays,” Proc. Roy. Soc. A132 (1931), 667–688.

    ADS  Google Scholar 

  13. G. Gamow, “Fine Structure of α-Rays,” Nature 126 (1930), 397. See also G. Gamow, Constitution of Atomic Nuclei and Radioactivity (Oxford: Clarendon Press, 1931).

    Google Scholar 

  14. Ellis to Bohr, 11 January 1932, BSC (19.1).

    Google Scholar 

  15. L. Meitner and K. Philipp, “Das γ-Spektrum von ThC” und die Gamowsche Theorie der α-Feinstruktur,” Naturwiss. 19 (1931), 1007.

    Article  ADS  Google Scholar 

  16. L. Meitner and K. Philipp, “Die γ-Strahlen von ThC und ThC” und die Feinstruktur der α-Strahlen,” Z. Phys. 80 (1932), 277–284, pp. 279–280.

    Google Scholar 

  17. S. Rosenblum and M. Curie, “Spectre magnétique des rayons a du dépôt actif de l’actinium,” J. de Phys. 2 (1931) 309–311; reprinted in Oeuvres de Salomon Rosenblum (Paris: Gauthier-Villars, 1969).

    Google Scholar 

  18. A.G.S. Smekal, “über spontane ‘strahlungslose’ Quantenvorgänge,” Ann. d. Phys. 81 (1926), 391–406, p. 393; idem., “über spontane ‘strahlungslose’ Quantenvorgänge,” Phys. Zeit. 27 (1926), 831–833.

    Google Scholar 

  19. W. Pauli, “Merkurperihelbewegung und Strahlenablenkung in Weyls Gravitationstheorie,” Verh. d. D. Phys. Ges. 21 (1919), 742–750, pp. 749–750.

    Google Scholar 

  20. J. Thibaud, Thèse. La spectroscopie des rayons γ. Spectre β secondaires et diffraction cristalline (Paris, 1925). See also J. Thibaud, “Les spectres secondaires de rayons gamma: Sur l’origine du fond continu et la variation d’intensité relative des raies,” J. de Phys. 6 (1925), 334–336.

    Google Scholar 

  21. Smekal, “Über spontane Quantenvorgänge” (note 18), p. 406.

    Google Scholar 

  22. C.D. Ellis and W.A. Wooster, “The Relative Intensities of the Groups in the Magnetic β-Ray Spectra of Radium B and C,” Proc. Roy. Soc. A117 (1927), 276–288.

    ADS  Google Scholar 

  23. Ibid., p. 285.

    Google Scholar 

  24. B. Swirles, “The Internal Conversion of γ-Rays,” Proc. Roy. Soc. A116 (1927), 491–500; idem. “… Part II,” Proc. Roy. Soc. Al21 (1928), 447–456.

    Google Scholar 

  25. Gamow to Bohr, 21 January 1929, BSC (11.1). Gamow wrote this letter in his typical mixture of Danish and German. The translation is my own, whereas the drawing is taken from the original letter.

    Google Scholar 

  26. “Discussion on the Structure of Atomic Nuclei,” Proc. Roy. Soc. Al23 (1929), 373–390, pp. 385–386.

    Google Scholar 

  27. Gamow to Meitner, 27 November 1929, MTNR 5/6.

    Google Scholar 

  28. Gamow to Bohr, 25 November 1929, BSC (11.1). The drawing is taken from the original letter.

    Google Scholar 

  29. C.D. Ellis and G.H. Aston, “The Absolute Intensities and Internal Conversion Coefficients of the ry-Rays of Radium B and Radium C,” Proc. Roy. Soc. Al29 (1930), 180–207.

    ADS  Google Scholar 

  30. find., p. 195.

    Google Scholar 

  31. Fowler to Bohr, 3 February 1930, BSC (19.2).

    Google Scholar 

  32. R.H. Fowler, “Speculations Concerning the α-, β- and γ-Rays of RaB, C, C’ — Part I. A Revised Theory of the Internal Absorption Coefficient,” Proc. Roy. Soc. Al29 (1930), 1–24.

    ADS  Google Scholar 

  33. Ibid., p. 24.

    Google Scholar 

  34. H.B.G. Casimir, “Innerer und äusserer Photoeffekt,” Phys. Zeit. 32 (1931), 665–667.

    Google Scholar 

  35. Ibid., p. 666.

    Google Scholar 

  36. H.R. Hulme, “The Internal Conversion Coefficient for Radium C,” Proc. Roy. Soc. A138 (1932), 643–664.

    ADS  Google Scholar 

  37. H.M. Taylor and N.F. Mott, “A Theory of the Internal Conversion of γ-Rays,” Proc. Roy. Soc. A138 (1932), 665–695.

    ADS  Google Scholar 

  38. The same argument followed from the nuclear model recently put forward by Heisenberg, as Taylor and Mott proved in their paper. Later on, however, it was realized that their proof was based on a misconception of Heisenberg’s theory, and accordingly the present ideas of nuclear constitution lent no support to the view of a vanishing dipole moment. See H.R. Hulme, N.F. Mott, Frank Oppenheimer, and H.M. Taylor, “The Internal Conversion Coefficient for 7-Rays,” Proc. Roy. Soc. A155 (1936), 315–330.

    Google Scholar 

  39. Taylor and Mott, “Theory” (note 37), pp. 667–669.

    Google Scholar 

  40. H.M. Taylor and N.F. Mott, “The Internal Conversion of γ-Rays. — II,” Proc. Roy. Soc. A142 (1933), 215–236. See also N.F. Mott, “Théorie de l’absorption interne des rayons 7,” Annales de l’Institut Henri Poincaré 4 (1933), 207–220.

    Google Scholar 

  41. As to the experimental values for ThB and ThC, see C.D. Ellis and N.F. Mott, “The Internal Conversion of the -y-Rays and Nuclear Level Systems of the Thorium B and C Bodies,” Proc. Roy. Soc. A139 (1933), 369–379.

    Google Scholar 

  42. J.B. Fisk and H.M. Taylor, “The Internal Conversion of γ-Rays,” Proc. Roy. Soc. A146 (1934), 178–181.

    ADS  Google Scholar 

  43. Ibid., p. 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Jensen, C., Aaserud, F., Kragh, H., Rüdinger, E., Stuewer, R.H. (2000). Towards a Theory of Internal Conversion: The Beta Line-Spectrum, 1927–1934. In: Aaserud, F., Kragh, H., Rüdinger, E., Stuewer, R.H. (eds) Controversy and Consensus: Nuclear Beta Decay 1911–1934. Science Networks · Historical Studies, vol 24. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8444-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8444-0_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9569-9

  • Online ISBN: 978-3-0348-8444-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics