Skip to main content

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We give a simple approach to the theory of the steady transport equation, providing some results that are needed in the theory of steady compressible viscous flow. In particular, we prove the assertions that are collected together in Lemma 3 of our accompanying paper [11]. Our methods are based on a construction of solutions by Galerkin approximation and on duality arguments with the adjoint equation. We conclude with some heuristic observations based on the theory of characteristics, explaining, particularly, the need for successively stronger restrictions on the size of the velocity field, in order to prove successively more regularity of the solution.

This work has been supported by the Natural Sciences and Engineering Research Council of Canada, contracts MURST and the GNFM of Italian CNR, and the Deutsche Forschungsgemeinschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beirão da Veiga, H., An L p-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Commun. Math. Phys., 109(1987), 229–248.

    Article  MATH  Google Scholar 

  2. Beirao da Veiga, H., On a stationary transport equation, Ann. Univ. Ferrara, 32(1986), 79–91.

    MathSciNet  MATH  Google Scholar 

  3. Beirao da Veiga, H., Existence results in Sobolev spaces for a stationary transport equation, Ricerche di Matematica suppl. 36(1987), 173–184.

    MathSciNet  MATH  Google Scholar 

  4. Beirao da Veiga, H., Boundary value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova 79(1988), 247–273.

    MathSciNet  Google Scholar 

  5. Coscia, V. & G.P. Galdi, Existence, uniqueness and stability of regular motions of a second grade fluid, Int. J. Nonlinear Mechanics, 29(1994), 493–506.

    Article  MathSciNet  MATH  Google Scholar 

  6. Farwig, R., Stationary solutions of compressible Navier-Stokes equations with slip boundary condition, Commun. In Partial Differential Equations, 14(11), (1989), 1579–1606.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fichera, G., Sulle equazioni differenziali lineari elliptico-paraboliche del secondo ordine, Atti Acad. Naz. Lincei, Mem. Cl. Sc. Fis. Mat. Nat., Sez. I, 5(1956), 1–30.

    MathSciNet  Google Scholar 

  8. Fichera, G., On a unified theory of boundary value problems for elliptic-parabolic equations of second order, in Boundary Problems. Differential Equations, Univ. of Wisconsin Press, Madison, Wisconsin, (1960), 97–120.

    Google Scholar 

  9. Friedrichs, K.O., Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11(1958), 333–418.

    Article  MathSciNet  MATH  Google Scholar 

  10. Galdi, G.P., Mathematical theory of second-grade fluids, CISM Courses and Lectures No. 344, Stability And Wave Propagation In Fluids And Solids, G.P. Galdi editor, Springer-Verlag 1995, 67–104.

    Google Scholar 

  11. Heywood, J.G. & M. Padula, On the existence and uniqueness theory for steady compressible viscous flow, this book, 1999.

    Google Scholar 

  12. Kohn, J.J. & L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math., 20(1967), 797–872.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lax, P.D. & R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., 13(1960), 427–455.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mizohata, S., The Theory of Partial Differential Equations, Cambridge Univ. Press, 1973.

    MATH  Google Scholar 

  15. Novotný, A., Steady flows of viscous compressible flows L 2 approach, SAACM, 3(1993), 181–199.

    Google Scholar 

  16. Novotný, A., Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method, Comment. Math. Univ. Carolina, 37(1996), 1–38.

    Google Scholar 

  17. Novotný, A., About the steady transport equation, L p approach in domains with smooth boundaries, Comm. Mat. Univ. Carolinae, 37(1996), 43–89.

    MATH  Google Scholar 

  18. Novotný, A. & M. Padula, L p-approach to steady flows of viscous compressible fluids in exterior domains, Arch. Rational Mech. Anal. 126(1994), 234–297.

    Article  Google Scholar 

  19. Oleinik, O.A., Linear equations of second order with nonnegative characteristic form, Amer. Math. Soc. Transl. (2) 65(1967), 167–199.

    Google Scholar 

  20. Padula, M., An existence theorem for steady state compressible Navier-Stokes equations, Proc. Meeting “Waves and Stability in Continuous Media”, Univ. Catania, 1981, 276–280.

    Google Scholar 

  21. Padula, M., Existence and uniqueness for steady compressible flow, Proc. Meeting “Dinamica dei Continui Fluidi e dei gas ionizzati, Univ. Trieste, 1982, 237–258.

    Google Scholar 

  22. Padula, M., Existence and uniqueness for viscous steady compressible motions, Arch. Rat. Mech. Anal., 97(1987), 89–102.

    Article  MathSciNet  MATH  Google Scholar 

  23. Padula, M., A representation formula for steady solutions of a compressible fluid moving at low speed, Transport Theory Statistical Physics, 21(1992), 593–614.

    Article  MathSciNet  MATH  Google Scholar 

  24. Padula, M., On the exterior steady problem for the equations of a viscous isothermal gas, Comm. Math. Carolinae, 34(1993), 275–293.

    MathSciNet  MATH  Google Scholar 

  25. Temam, R., On the Euler equations of incompressible perfect fluids, J. Fun. Anal., 20(1975), 32–43.

    Article  MathSciNet  MATH  Google Scholar 

  26. Valli, A., On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire 4(1987), 99–113.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Heywood, J.G., Padula, M. (2000). On The Steady Transport Equation. In: Galdi, G.P., Heywood, J.G., Rannacher, R. (eds) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8424-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8424-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9561-3

  • Online ISBN: 978-3-0348-8424-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics