Skip to main content

The Friedrichs Operator of a Planar Domain

  • Conference paper
Complex Analysis, Operators, and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 113))

Abstract

Properties of the Friedrichs operator of a planar domain, originally intended for applications to planar elasticity, are related to the geometry and function theory of the domain. We show that the spectrum of the Friedrichs operator does not, in general, determine the domain, and we provide the additional necessary complete invariants. An analysis of the Friedrichs operator of generalized quadrature domains is carried out at the abstract level and on several examples. The study of Toeplitz operators on the Bergman space of the domain comes naturally into focus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. A. Amenzade, Theory of elasticity, Mir, Moscow, 1979.

    MATH  Google Scholar 

  2. D. Aharonov and H. S. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. d’Analyse Math. 30 (1976), 39–73.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Axler and P. Bourdon, Finite codimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 306 (1988), 805–817.

    MathSciNet  MATH  Google Scholar 

  4. St. Bergman, The kernel function and conformal mapping, Second (rev.) ed., Amer. Math. Soc. Math. Surveys 5, Providence, R.I., 1970.

    Google Scholar 

  5. Ph. Davis, Interpolation and Approximation, Dover Publ., New York, 1975.

    MATH  Google Scholar 

  6. J. Détraz, Problème de Dirichlet pour le système \({{\partial ^2 f} \mathord{\left/ {\vphantom {{\partial ^2 f} {\partial \overline {z_i } \partial \overline {z_j } }}} \right. \kern-\nulldelimiterspace} {\partial \overline {z_i } \partial \overline {z_j } }} = 0\), Arkiv för Mat,26(1988), 173–184.

    Article  MATH  Google Scholar 

  7. K. Friedrichs, On certain inequalities for analytic functions and for functions of two variables, Trans. Amer. Math. Soc. 41(1937), 321–364.

    Article  MathSciNet  Google Scholar 

  8. B. Gustafsson, On mother bodies of convex polyhedra, SIAM J. Math. Analysis 29(1998), 1106–1117.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Gustafsson, M. Sakai, and H. S. Shapiro, On domains in which harmonic functions satisfy generalized mean value properties, Potential Analysis 7(1997), 467–484.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Havin, Approximation in the mean by analytic functions, Dokl. Akad. Nauk SSSR 178(1968), 1025–1028.

    MathSciNet  Google Scholar 

  11. T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin, 1995.

    MATH  Google Scholar 

  12. D. Khavinson and H. S. Shapiro, Dirichlet’s problem when the data is an entire function, Bull. London Math. Soc. 24(1992), 456–468.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Lin and R. Rochberg, On the Friedrichs operator, Proc. Amer. Math. Soc. 123(1995), 3335–3342.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff, Groningen, 1963.

    MATH  Google Scholar 

  15. Z. Nehari, Conformal mapping, Dover, New York, 1975.

    Google Scholar 

  16. S. Norman, The Friedrichs operator, research report TRITA-MAT-1987–16, Royal Inst. of Technology, 1987.

    Google Scholar 

  17. M. Putinar, Extremal solutions of the two-dimensional L-problem of moments, J. Funct. Analysis 136 (1996), 331–364.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. 1, Academic Press, New York, 1972.

    MATH  Google Scholar 

  19. M. Sakai, Quadrature Domains, Lect. Notes Math. 934 Springer-Verlag, Berlin, 1982.

    Book  MATH  Google Scholar 

  20. H. S. Shapiro, Some inequalities for analytic functions integrable over a plane domain, in proc. of conf. “Approximation and Function Spaces” Gdansk 1979, North Holland, 1981, pp. 645–666.

    Google Scholar 

  21. H. S. Shapiro, Stefan Bergman’s theory of doubly-orthogonal functions. An operator-theoretic approach, Proc. Royal Irish Acad., Section A 79:A-6 (1979), 49–58.

    Google Scholar 

  22. H. S. Shapiro, On some Fourier and distribution-theoretic methods in approximation theory, in Approximation Theory. III, Proc. Conf. held in Austin, Texas, 1980 (W. Cheney et al., eds.), Academic Press, San Diego, 1980, pp. 87–124.

    Google Scholar 

  23. H. S. Shapiro, Reconstructing a function from its values on a subset of its domain—a Hilbert space approach, J. Approx. Th. 46(1986), 385–402.

    Article  MATH  Google Scholar 

  24. H. S. Shapiro, The Schwarz function and its generalization to higher dimensions, Wiley-Interscience, New York, 1992.

    MATH  Google Scholar 

  25. A. L. Shields, Weighted shift operators and analytic function theory, Math. Surveys Vol. 13 (1974), Amer. Math. Soc., Providence, R.I., pp. 49–128.

    MathSciNet  Google Scholar 

  26. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Putinar, M., Shapiro, H.S. (2000). The Friedrichs Operator of a Planar Domain. In: Havin, V.P., Nikolski, N.K. (eds) Complex Analysis, Operators, and Related Topics. Operator Theory: Advances and Applications, vol 113. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8378-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8378-8_25

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9541-5

  • Online ISBN: 978-3-0348-8378-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics