Skip to main content

Poisson structure and quantization of Chern-Simons theory

  • Conference paper
Quantization of Singular Symplectic Quotients

Part of the book series: Progress in Mathematics ((PM,volume 198))

Abstract

In this note we review some work on the Poisson structure and on the quantization of 2 + 1 dimensional Chern-Simons theory or, in more mathematical terms, of the moduli space of flat connections over a 2-dimensional surface ∑. This moduli space is one of the most important examples of a singular symplectic space. Our description focuses on the combinatorial approach in which the surface ∑ is replaced by a fat graph. Due to the topological nature of the theory, this finite model is exact and allows to recover a number of important results on Chern-Simons theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Yu. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory, Commun. Math. Phys. 172 (1995), 317.

    Article  MathSciNet  MATH  Google Scholar 

  2. A.Yu. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory II, Commun. Math. Phys. 174 (1995), 561.

    Article  MathSciNet  Google Scholar 

  3. A.Yu. Alekseev, A. Malkin, Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys. 162 (1994), 147.

    Article  MATH  Google Scholar 

  4. A.Yu. Alekseev, A. Malkin, Symplectic structure of the moduli space of flat connections on a Riemann surface, Commun. Math. Phys. 169 (1995), 99.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.Yu. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Diff. Geom. 48 (1998), 445.

    MathSciNet  MATH  Google Scholar 

  6. A.Yu. Alekseev, A. Recknagel, V. Schomerus, Non-commutative world-volume geometries: Branes on SU(2) and fuzzy spheres, JHEP 9909 (1999), 023.

    Article  MathSciNet  Google Scholar 

  7. [] A.Yu. Alekseev, V. Schomerus, Representation theory of Chern-Simons observables, Duke Math. J. 85 (1996), 447, q-alg/9503016.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.E. Andersen, J. Mattes, N.Yu Reshetikhin, Poisson structure on the moduli space of flat connections and chord diagrams, Topology 35 (1996), 1069.

    Article  MathSciNet  MATH  Google Scholar 

  9. [] J.E. Andersen, J. Mattes, N.Yu. Reshetikhin, Quantization of the algebra of chord diagrams, Math. Proc. Cambridge Philos. Soc. 124 (1998), 451–467, q-alg/9701018.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. F. Atiyah, The Geometry and Physics of Knots, Cambridge Univ. Press, Cambridge 1990.

    Book  MATH  Google Scholar 

  11. M. F. Atiyah, R. Bott, The Yang-Mills equation over Riemann surfaces, Phil. Trans. Royal Soc. London, A308 (1982), 523.

    MathSciNet  Google Scholar 

  12. S. Axelrod, S. Della Pietra, E. Witten, Geometric quantization of Chern-Simons gauge theory, J. Diff. Geom. 33 (1991), 787.

    MATH  Google Scholar 

  13. [] R.A. Baadhio, Quantum Topology and Global Anomalies, World Scientific, 1996.

    Google Scholar 

  14. J.S. Birman, Braids, Links and Mapping Class Groups, Princeton University Press, Princeton, 1976.

    Google Scholar 

  15. [] E. Buffenoir, Ph. Roche, Two dimensional lattice gauge theory based on a quantum group, Commun. Math. Phys. 170 (1995), 669, hep-th/9405126.

    Article  MathSciNet  MATH  Google Scholar 

  16. [] E. Buffenoir, Chern-Simons theory on a lattice and a new description of three manifolds invariants, q-alg/9509020.

    Google Scholar 

  17. V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge 1994.

    Google Scholar 

  18. S. Deser, R. Jackiw, S. Templeton, Three dimensional massive gauge theories, Phys. Rev. Lett. 48 (1983), 975.

    Article  Google Scholar 

  19. S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theory, Ann. Phys. (NY) 140 (1984), 372.

    Article  MathSciNet  Google Scholar 

  20. V.G. Drinfel’d, Quasi Hopf algebras and Knizhnik-Zamolodchikov equations, in: Problems of Modern Quantum Field Theory (Alushta, 1989), Springer-Verlag, Heidelberg, 1989.

    Google Scholar 

  21. V.G. Drinfel’d, Quasi Hopf algebras, Leningrad Math. J. Vol. 1 (1990), 1419.

    MathSciNet  MATH  Google Scholar 

  22. S. Elitzur, G. Moore, A. Schwimmer, N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989), 108.

    Google Scholar 

  23. [] V.V. Fock, A.A. Rosly, Poisson structures on moduli of flat connections on Riemann surfaces and r-matrices,preprint ITEP 72–92, June 1992, Moscow, math/9802054.

    Google Scholar 

  24. J. Fröhlich, T. Kerler,Quantum Groups,Quantum Categories and Quantum Field Theory,Lecture Notes in Math.1542 Springer-Verlag, Berlin, 1993.

    Google Scholar 

  25. D. Gepner, W. Witten, String theory on group manifolds, Nucl. Phys. B278 (1986), 493.

    MathSciNet  Google Scholar 

  26. W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Inv. Math. 85 (1986), 263.

    Article  MATH  Google Scholar 

  27. W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200.

    MATH  Google Scholar 

  28. K. Guruprasad, J. Huebschmann, L. Jeffrey, A. Weinstein, Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J. 89 (1997), 377.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Jones, Index of subfactors, Inv. Math. 72 (1983), 1.

    Article  MATH  Google Scholar 

  30. V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335.

    Article  MATH  Google Scholar 

  31. Ch. Kassel, Quantum Groups, Springer-Verlag, Berlin, 1995.

    Book  MATH  Google Scholar 

  32. L. Kauffman, State models and the Jones polynomial,Topology 26 (1987), 395.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Kerler, Mapping class group actions on quantum doubles, Commun. Math. Phys. 168 (1995), 353.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257.

    MathSciNet  MATH  Google Scholar 

  35. V. Lyubashenko, Tangles and Hopf algebras in braided tensor categories, J. Pure Appl. Alg. 98 (1995) 245.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Mack, V. Schomerus, Quasi Hopf quantum symmetry in quantum theory, Nucl. Phys. B 370 (1992), 185.

    Google Scholar 

  37. S. Majid, Braided groups, J. Pure Appl. Alg. 86 (1993), 187.

    Article  MathSciNet  MATH  Google Scholar 

  38. N.Yu. Reshetikhin, V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990), 1.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Turaev, Quantum Invariants of Knots and Three Manifolds, de Gruyter, Berlin, 1994.

    Google Scholar 

  40. E. Witten,Quantum field theory and the Jones polynomial, Commun. Math. Phys.121(1989), 351.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Schomerus, V. (2001). Poisson structure and quantization of Chern-Simons theory. In: Landsman, N.P., Pflaum, M., Schlichenmaier, M. (eds) Quantization of Singular Symplectic Quotients. Progress in Mathematics, vol 198. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8364-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8364-1_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9535-4

  • Online ISBN: 978-3-0348-8364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics