Skip to main content

Hardy spaces on a finite bordered Riemann surface, multivariable operator model theory and Fourier analysis along a unimodular curve

  • Conference paper
Systems, Approximation, Singular Integral Operators, and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 129))

Abstract

In this paper we continue the study of (in general) indefinite Hardy spaces on a finite bordered Riemann surface as reported in [5]. To put the ideas in context, we begin with the classical case, where the bordered Riemann surface is the closed unit disk \(\bar{\mathbb{D}}\). We let \(\mathbb{T}\) denote the unit circle, ε* denote a Hilbert space, and let \({{L}^{2}}(\mathbb{T},{{\mathcal{E}}_{*}})\) be the standard Lebesgue space of ε *-valued, measurable functions f defined on \(\mathbb{T}\) with \(\parallel f\parallel _{2}^{2} = \tfrac{1}{{2\pi }}{{\smallint }_{\mathbb{T}}}\parallel f(z){{\parallel }^{2}}|dz| < \infty\) Then an arbitrary element f of \({{L}^{2}}(\mathbb{T},{{\mathcal{E}}_{*}})\) alternatively can be presented in terms of a Fourier representation \(f(z) \sim \sum _{{n = - \infty }}^{\infty }{{f}_{n}}{{z}^{n}}\) with Fourier coefficients f n (n =…, -1, 0, 1,…) taking values in ε * and with \(\parallel f\parallel _{2}^{2} = \sum _{{n = - \infty }}^{\infty }\parallel f{{\parallel }^{2}}\) The Hardy space \({{H}^{2}}(\mathbb{D},{{\mathcal{E}}_{*}})\) consists of ε *.-valued analytic functions on the unit disk \(\mathbb{D}\) with \(\parallel f(z){{\parallel }^{2}}\) possessing a harmonic majorant, and can be identified as the subspace of functions f in \({{L}^{2}}(\mathbb{T},{{\mathcal{E}}_{*}})\) with Fourier representation of the form \(f(z) \sim \sum _{{n = 0}}^{\infty }{{f}_{n}}{{z}^{n}}\) The orthogonal complement \({{H}^{2}}{{(\mathcal{D},{{\mathcal{E}}_{*}})}^{ \bot }}\) in \({{L}^{2}}(\mathbb{T},{{\mathcal{E}}_{*}})\) consists of \({{L}^{2}}(\mathbb{T},{{\mathcal{E}}_{*}})\) -functions f with Fourier series of the form \(f(z) \sim \sum _{{n = - \infty }}^{{ - 1}}{{f}_{n}}{{z}^{n}}\) and can be identified with the Hardy space \(H_{0}^{2}({{\mathbb{D}}_{e}},{{\mathcal{E}}_{*}})\) consisting of functions analytic on the complement \({{\mathbb{D}}_{e}}\) of the closed unit disk in the extended complex plane \({{\mathbb{C}}_{\infty }}\) which vanish at ∞. The operator M z of multiplication by the coordinate function z on \( {{L}^{2}}\left( {\mathbb{T},{{\varepsilon }_{*}}} \right) \) is unitary (specifically, the bilateral shift operator of multiplicity equal to dim ε *), and its restriction \(V{\varepsilon _*}: = {M_z}{|_{{H^2}\left( {\mathbb{D},{\varepsilon _*}} \right)}}:{H^2}\left( {\mathbb{D},{\varepsilon _*}} \right) \to {H^2}\left( {\mathbb{D},{\varepsilon _*}} \right) \) is an isometry (the unilateral shift operator of multiplicity equal to dim ε *).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Abrahamse, and R. G. Douglas, A class of subnormal operators related to multiply connected domains, Advances in Math., 19 (1976), 106–148.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. B. Abrahamse and R. G. Douglas, Operators on multiply connected domains, Proc. of the Royal Irish Acad., 74A (1974), 135–141.

    MathSciNet  Google Scholar 

  3. V. M. Adamjan and D. Z. Arov, On unitary couplings of semiunitary operators, Dokl. Akad. Nauk Arm. SSR, XLIII (1966) [in Russian]; English transl., Amer. Math. Soc. Transi., 95 (1970), 75–129.

    Google Scholar 

  4. J. Agler, Rational dilation on an annulus, Annals of Mathematics, 121 (1985), 537–563.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Alpay and V. Vinnikov, Indefinite Hardy spaces on finite bordered Riemann surfaces, J. Functional Analysis, 172 (2000), 221–248.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Ando, On a pair of commutative contractions, Acta Sci. Math., 24 (1963), 88–90.

    MathSciNet  MATH  Google Scholar 

  7. A. C. Antoulas (ed.), Mathematical System Theory: The Influence of R. E. Kalman, Springer-Verlag, Berlin-New York, 1991.

    MATH  Google Scholar 

  8. J. A. Ball, Operators of class Coo over multiply-connected domains, Mich. Math. J., 25 (1978), 183–196.

    MATH  Google Scholar 

  9. J. A. Ball, Linear systems, operator model theory and scattering: multivariable generalizations, Operator Theory and its Applications (Winnipeg, MB, 1998), 151–178, Fields Inst. Commun., 25, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  10. J. A. Ball and K. Clancey, Reproducing kernels for Hardy spaces on multiply connected domains, Integral Equations and Operator Theory, 25 (1996), 35–57.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. A. Ball and N. Cohen, De Branges-Rovnyak operator models and systems theory: a survey, Topics in Matrix and Operator Theory (H. Bart, I. Gohberg, and M. A. Kaashoek, eds.), OT 50, Birkhäuser Verlag, Basel, 1991, pp. 93–136.

    Google Scholar 

  12. J. A. Ball and T. T. Trent, The abstract interpolation problem and commutant lifting: a coordinate-free approach, Operator Theory and Interpolation: International Workshop on Operator Theory and Applications, IWOTA96 (Ed. H. Bercovici, C. Foias), OT 115, Birkhäuser-Verlag, Basel-Boston, 2000, pp. 51–83.

    Google Scholar 

  13. J. A. Ball and V. Vinnikov, Zero-pole interpolation for meromorphic matrix functions on an algebraic curve and transfer functions of 2D systems, Acta Applicandae Mathematicae, 45 (1996) 239–316.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. A. Ball and V. Vinnikov, Zero-pole interpolation for matrix meromorphic functions on a compact Riemann surface and a matrix Fay trisecant identity, American J. Math., 121 (1999), 841–888.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. A. Ball and V. Vinnikov, Multidimensional discrete-time systems, algebraic curves and commuting nonunitary operators, in preparation.

    Google Scholar 

  16. M. S. Brodskii, Triangular and Jordan representations of linear operators, Transl. Math. Monographs, vol. 32, Amer. Math. Soc., Providence, 1971.

    Google Scholar 

  17. M. S. Brodskii, Unitary operator colligations and their characteristic functions, Russian Math. Surveys, 33 (1978), 159–191.

    Article  MathSciNet  Google Scholar 

  18. M. S. Brodskii and M. S. Livšic, Spectral analysis of nonselfadjoint operators and intermediate systems, Amer. Math. Soc. Transl. Ser. 2 13 (1960), 265–346.

    Google Scholar 

  19. L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics (C. Wilcox, ed.), Wiley, New York, 1966, pp. 295–392.

    Google Scholar 

  20. K. F. Clancey, Toeplitz operators on multiply connected domains and theta functions, Contributions to Operator Theory and its Applications (Mesa, AZ, 1987) (Ed. I. Gohberg, J. W. Helton and L. Rodman), 311–355, OT35 Birkhäuser-Verlag, Basel-Boston, 1988.

    Chapter  Google Scholar 

  21. R. E. Curto, R. G. Douglas, J. D. Pincus and N. Salinas (Editors), Multivariable Operator Theory: Papers from the Joint Summer Research Conference held at the University of Washington, Seattle, Washington, July 10–18, 1993, Contemporary Mathematics, 185, Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  22. J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics Vol. 352, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  23. S. I. Fedorov, On harmonic analysis in a multiply connected domain and characterautomorphic Hardy spaces, St. Petersburg J., 9 (1998), 339–378.

    Google Scholar 

  24. S. I. Fedorov, On a projection from one co-invariant subspace onto another in character-automorphic Hardy space on a multiply connected domain, Math. Nachr., 217 (2000), 53–74.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. M. Farkas and I. Kra, Riemann Surfaces, Second Edition, Springer-Verlag, Berlin-New York, 1991.

    Google Scholar 

  26. M. Hasumi, Invariant subspace theorems for finite Riemann surfaces, Canad. J. Math., 18 (1966), 240–255.

    MathSciNet  MATH  Google Scholar 

  27. K. Hoffman, Banach spaces of analytic functions Prentice-Hall, Englewood Cliffs, NJ, 1962.

    MATH  Google Scholar 

  28. R. E. Kalman, P. Falb and M. Arbib, Topics in Mathematical System Theory, McGraw-Hill, New York, 1969.

    MATH  Google Scholar 

  29. V. E. Katsnelson, Right and left joint system representation of a rational matrix function in general position (system representation theory for dummies), Operator Theory, System Theory and Related Topics (The Moshe Livšic Anniversary Volume), Operator Theory: Adv. Appl., Birkhäuser Verlag, Basel, in press.

    Google Scholar 

  30. M. S. Livšic, Operators,oscillations, waves (open systems), Transi. Math. Monographs, vol. 34, Amer. Math. Soc., Providence, 1973.

    MATH  Google Scholar 

  31. M. S. Livšc, N. Kravitsky, A. S. Markus and V Vinnikov, Theory of Commuting Nonselfadjoint Operators, Kluwer, 1995.

    Google Scholar 

  32. B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, American Elsevier, New York N. Y. 1970.

    MATH  Google Scholar 

  33. N. Nikolski, Treatise on the shift operator, Springer Verlag, Berlin-Heidelberg, 1986.

    Book  Google Scholar 

  34. N. K. Nikolskii and V. I. Vasyunin, Elements of spectral theory in terms of the free function model. Part I: Basic constructions, Holomorphic Spaces and Their Operators (S. Axler, J. McCarthy, and D. Sarason, eds.), Math. Sci. Res. Inst. Publ., vol. 33, Cambridge University Press, Cambridge, 1988, pp. 351–379.

    Google Scholar 

  35. M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, corrected reprint of 1985 original, Dover, Mineola, NY, 1997.

    Google Scholar 

  36. W. Rudin, Analytic functions of class H P , Trans. Amer. Math. Soc., 78 (1955), 46–66.

    MathSciNet  MATH  Google Scholar 

  37. D. Sarason, The H P spaces of an annulus, Memoirs of the American Mathematical Society, 1, No. 56, 1965.

    MathSciNet  Google Scholar 

  38. N. Th. Varapoulas, On an inequality of von Neumann and an application of the metric theory of tensor products to operator theory, J. Funct. Anal., 16 (1974), 83–100.

    Article  Google Scholar 

  39. N. Th. Varapoulas, On a commuting family of contractions on a Hilbert space, Rev. Roumaine Math. Pures Appl., 21 (1976), 1283–1285.

    MathSciNet  Google Scholar 

  40. V. Vinnikov, Commuting operators and function theory on a Riemann surface Holomorphic Spaces (Ed S. Axler, J. E. McCarthy, and D. Sarason) MSRI Publications, Cambridge University Press, 1998.

    Google Scholar 

  41. M. Voichick, Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc., 111 (1964), 493–512.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Yakubovich, Subnormal operators of finite type. I. Xia’s model and real algebraic curves in, ℂn Rev. Mat. Iberoamericana, 14 (1998), 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Yakubovich, Subnormal operators of finite type. II. Structure theorems, Rev. Mat. Iberoamericana, 14 (1998), 623–681.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Zucchi, Operators of class C 0 with spectra in multiply connected regions, Memoirs of the American Mathematical Society, Vol. 127 No. 607 (third of 4 numbers), 1997.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Ball, J.A., Vinnikov, V. (2001). Hardy spaces on a finite bordered Riemann surface, multivariable operator model theory and Fourier analysis along a unimodular curve. In: Borichev, A.A., Nikolski, N.K. (eds) Systems, Approximation, Singular Integral Operators, and Related Topics. Operator Theory: Advances and Applications, vol 129. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8362-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8362-7_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9534-7

  • Online ISBN: 978-3-0348-8362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics