Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The TGF-β superfamily consists of a large number of structurally related cytokines, including activin/inhibin, the bone morphogenetic proteins (BMPs), the growth and differentiation factors (GDFs), the TGF-βs and a number of proteins involved in developmental patterning. Much of the research into the biology of the TGF-β superfamily has focused on TGF-β1 (the first to be discovered), and it is this isoform about which most is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massagué J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6: 597–641

    Article  PubMed  Google Scholar 

  2. Birchenall-Roberts MC, Ruscetti FW, Kasper J, Lee HD, Friedman R, Geiser A, Sporn MB, Roberts AB, Kim SJ (1990) Transcriptional regulation of the transforming growth factor beta 1 promoter by v-src gene products is mediated through the AP-1 complex. Mol Cell Biol 10: 4978–4983

    PubMed  CAS  Google Scholar 

  3. Geiser AG, Busam KJ, Kim SJ, Lafyatis R, O’Reilly MA, Webbink R, Roberts AB, Sporn MB (1993) Regulation of the transforming growth factor-beta 1 and-beta 3 promoters by transcription factor Sp1. Gene 129: 223–228

    Article  PubMed  CAS  Google Scholar 

  4. O’Reilly MA, Geiser AG, Kim SJ, Bruggeman LA, Luu AX, Roberts AB, Sporn MB (1992) Identification of an activating transcription factor (ATF) binding site in the human transforming growth factor-beta 2 promoter. J Biol Chem 267: 19938–19943

    PubMed  Google Scholar 

  5. Van Obberghen-Schilling E, Roche NS, Flanders KC, Sporn MB, Roberts AB (1988) Transforming growth factor-beta-1 positively regulates its own expression in normal and transformed cells. J Biol Chem 263: 7741–7746

    PubMed  Google Scholar 

  6. Flanders KC, Holder MG, Winokur TS (1995) Autoinduction of mRNA and protein expression for transforming growth factor-beta in cultured cardiac cells. J Mol Cell Cardio 127: 805–812

    Article  Google Scholar 

  7. Madisen L, Lioubin MN, Finerty PJ Jr, Sutter K, Blake J, Frederick J, Purchio AF (1991) Expression of recombinant TGF-beta 2(442) precursor and detection in BSC-40 cells. Growth Factors 5: 317–325

    Article  PubMed  CAS  Google Scholar 

  8. Webb NR, Madisen L, Rose TM, Purchio AF (1988) Structural and sequence analysis of TGF-beta 2 cDNA clones predicts two different precursor proteins produced by alternative mRNA splicing. DNA 7: 493–497

    Article  PubMed  CAS  Google Scholar 

  9. Liu C, Wallace K, Shi C, Heyner S, Komm B, Haddad JG (1996) Post-transcriptional Stimulation of transforming growth factor beta 1 mRNA by TGF-beta 1 treatment of transformed human osteoblasts. J Bone Miner Res 11: 211–217

    Article  PubMed  CAS  Google Scholar 

  10. Potts JD, Vincent EB, Runyan RB, Weeks DL (1992) Sense and antisense TGF beta 3 mRNA levels correlate with cardiac valve induction. Dev Dyn 193: 340–345

    Article  PubMed  CAS  Google Scholar 

  11. Scotto L, Assoian RK (1993) A GC-rich domain with bifunctional effects on mRNA and protein levels: implications for control of transforming growth factor beta 1 expression. Mol Cell Biol 13: 3588–3597

    PubMed  CAS  Google Scholar 

  12. Arrick BA, Lee AL, Grendell RL, Derynck R (1991) Inhibition of translation of transforming growth factor-beta 3 mRNA by its 5’ untranslated region. Mol Cell Biol 11: 4306–4313

    PubMed  CAS  Google Scholar 

  13. Kim SJ, Park K, Kodier D, Kim KY, Wakefield LM, Sporn MB, Roberts AB (1992) Posttranscriptional regulation of the human transforming growth factor-beta 1 gene. J Biol Chem 267: 13702–13707

    PubMed  CAS  Google Scholar 

  14. Gentry LE, Lioubin MN, Purchio AF, Marquardt H (1988) Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature Polypeptide. Mol Cell Biol 8: 4162–4168

    PubMed  CAS  Google Scholar 

  15. Gray AM, Mason AJ (1990) Requirement for activin A and transforming growth factor-beta 1 pro-regions in homodimer assembly. Science 247: 1328–1330

    Article  PubMed  CAS  Google Scholar 

  16. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 270: 10618–10624

    Article  PubMed  CAS  Google Scholar 

  17. Cui Y, Jean F, Thomas G, Christian JL (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 17: 4735–4743

    Article  PubMed  CAS  Google Scholar 

  18. Constam DB, Robertson EJ (1999) Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol 144: 139–149

    Article  PubMed  CAS  Google Scholar 

  19. Nachtigal MW, Ingraham HA (1996) Bioactivation of Mullerian inhibiting substance during gonadal development by a kex2/subtilisin-like endoprotease. Proc Natl Acad Sci USA 93: 7711–7716

    Article  PubMed  CAS  Google Scholar 

  20. Blanchette F, Day R, Dong W, Laprise MH, Dubois CM (1997) TGFbetal regulates gene expression of its own converting enzyme furin. J Clin Invest 99: 1974–1983

    Article  PubMed  CAS  Google Scholar 

  21. Purchio AF, Cooper JA, Brunner AM, Lioubin MN, Gentry LE, Kovacina KS, Roth RA, Marquardt H (1988) Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-beta 1 precursor. J Biol Chem 263: 14211–14215

    PubMed  CAS  Google Scholar 

  22. Bonewald LF, Wakefield L, Oreffo RO, Escobedo A, Twardzik DR, Mundy GR (1991) Latent forms of transforming growth factor-beta (TGF beta) derived from bone cultures: identification of a naturally occurring 100-kDa complex with similarity to recombinant latent TGF beta. Mol Endocrinol 5: 741–751

    Article  PubMed  CAS  Google Scholar 

  23. Miyazono K, Olofsson A, Colosetti P, Heldin CH (1991) A role of the latent TGF-beta1-binding protein in the assembly and secretion of TGF-beta-1. EMBO J 10:1091–1101

    PubMed  CAS  Google Scholar 

  24. Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K, Claesson-welsh L, Heldin CH (1990) TGF-beta-1 binding-protein: a component of the large latent complex of TGF-beta-l with multiple repeat sequences. Cell 61: 1051–1061

    Article  PubMed  CAS  Google Scholar 

  25. Moren A, Olofsson A, Stenman G, Sahlin P, Kanzaki T, Claesson-Welsh L, ten Dijke P, Miyazono K, Heldin CH (1994) Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem 269: 32469–32478

    PubMed  CAS  Google Scholar 

  26. Yin W, Smiley E, Germiller J, Mecham RP, Florer JB, Wenstrup RJ, Bonadio J (1995) Isolation of a novel latent transforming growth factor-beta binding protein gene (LTBP 3). J Biol Chem 270: 10147–10160

    Article  PubMed  CAS  Google Scholar 

  27. Saharinen J, Taipale J, Monni O, Keski-Oja J (1998) Identification and characterization of a new latent transforming growth factor-beta-binding protein, LTBP-4. J Biol Chem 273: 18459–18469

    Article  PubMed  CAS  Google Scholar 

  28. Yin W, Fang J, Smiley E, Bonadio J (1998) S-Cysteine TGF-BP structural motifs are the site of covalent binding between mouse LTBP-3, LTBP-2, and latent TGF-beta 1. Biochim Biophys Acta 1383: 340–350

    Article  PubMed  CAS  Google Scholar 

  29. Yin W, Smiley E, Bonadio J (1998) Alternative splicing of LTBP-3. Biochem Biophys Res Commun 245: 454–458

    Article  PubMed  CAS  Google Scholar 

  30. Oklu R, Hesketh TR, Metcalfe JC, Kemp PR (1998) Expression of alternatively spliced human latent transforming growth factor beta binding protein-1. FEBS Lett 435: 143–148

    Article  PubMed  CAS  Google Scholar 

  31. Saharinen J, Taipale J, Keski-Oja J (1996) Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMB O J 15: 245–253

    CAS  Google Scholar 

  32. Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB (1996) Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1. J Biol Chem 271: 29891–29896

    Article  PubMed  CAS  Google Scholar 

  33. Gibson MA, Hatzinikolas G, Davis EC, Baker E, Sutherland GR, Mecham RP (1995) Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils. Mol Cell Biol 15: 6932–6942

    PubMed  CAS  Google Scholar 

  34. Taipale J, Miyazono K, Heldin CH, Keski-Oja J (1994) Latent transforming growth-factor-beta-1 associates to fibroblast extracellular-matrix via latent TGF-beta binding-protein. J Cell Biol 124: 171–181

    Article  PubMed  CAS  Google Scholar 

  35. Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF (1995) Dual role for the latent transforming growth-factor-beta binding-protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol 131: 539–549

    Article  PubMed  CAS  Google Scholar 

  36. Ahmed W, Kucich U, Abrams W, Bashir M, Rosenbloom J, Segade F, Mecham R (1998) Signaling pathway by which TGF-beta 1 increases expression of latent TGF-beta binding protein-2 at the transcriptional level. Connect Tissue Res 37: 263–276

    Article  PubMed  CAS  Google Scholar 

  37. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB (1997) Latent transforming growth factor-beta: Structural features and mechanisms of activation. Kidney Int 51: 1376–1382

    Article  PubMed  CAS  Google Scholar 

  38. Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor-beta-1 by plasmin. J Cell Biol 110: 1361–1367

    Article  PubMed  CAS  Google Scholar 

  39. Abe M, Oda N, Sato Y (1998) Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol 174: 186–193

    Article  PubMed  CAS  Google Scholar 

  40. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93: 1159–1170

    Article  PubMed  CAS  Google Scholar 

  41. Schultz-Cherry S, Murphy-Ullrich JE (1993) Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol 122: 923–932

    Article  PubMed  CAS  Google Scholar 

  42. Grainger DJ, Frow EK (2000) Thrombospondin-l does not activate transforming growth factor-βl in a chemically defined system or in smooth muscle cell cultures. Biochem J 350: 291–298

    Article  PubMed  CAS  Google Scholar 

  43. Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol 143: 303–308

    Article  PubMed  CAS  Google Scholar 

  44. Grainger DJ, Byrne CD, Witchell CM, Metcalfe JC (1997) Transforming growth factor beta is sequestered into an inactive pool by lipoproteins. J Lipid Res 38: 2344–2352

    PubMed  CAS  Google Scholar 

  45. Taipale J, Lohi J, Saarinen J, Kovanen PT, Keski-Oja J (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270: 4689–4696

    Article  PubMed  CAS  Google Scholar 

  46. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322: 809–814

    PubMed  CAS  Google Scholar 

  47. Kolodziejczyk SM, Hall BK (1996) Signal transduction and TGF-beta superfamily receptors. Biochem Cell Biol 74: 299–314

    Article  PubMed  CAS  Google Scholar 

  48. Derynck R, Feng XH (1997) TGF-beta receptor signaling. Biochim Biophys Acta 1333: F105–150

    Google Scholar 

  49. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massagué J (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014

    Article  PubMed  CAS  Google Scholar 

  50. Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67: 753–791

    Article  PubMed  Google Scholar 

  51. López-Casillas F, Wrana JL, Massagué J (1993) Betaglycan presents ligand to the TGF-beta signaling receptor. Cell 73: 1435–1444

    Article  PubMed  Google Scholar 

  52. Letamendia A, Lastres P, Botella LM, Raab U, Langa C, Velasco B, Attisano L, Bernabeu C (1998) Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem 273: 33011–33019

    Article  PubMed  CAS  Google Scholar 

  53. O’Grady P, Liu Q, Huang SS, Huang JS (1992) Transforming growth factor beta (TGF-beta) type V receptor has a TGF-beta-stimulated serine/threonine-specific autophospho-rylation activity. J Biol Chem 267: 21033–21037

    PubMed  Google Scholar 

  54. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JL (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85: 489–500

    Article  PubMed  CAS  Google Scholar 

  55. Baker JC, Harland RM (1996) A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev 10: 1880–1889

    Article  PubMed  CAS  Google Scholar 

  56. Liu F, Pouponnot C, Massagué J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 11: 3157–3167

    Article  PubMed  CAS  Google Scholar 

  57. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85–89

    Article  PubMed  CAS  Google Scholar 

  58. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr., Wrana JL et al (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89: 1165–1173

    Article  PubMed  CAS  Google Scholar 

  59. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12: 186–197

    Article  PubMed  CAS  Google Scholar 

  60. Lohr JL, Danos MC, Groth TW, Yost HJ (1998) Maintenance of asymmetric nodal expression in Xenopus laevis. Dev Genet 23: 194–202

    Article  PubMed  CAS  Google Scholar 

  61. Oh SP, Li E (1997) The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev 11: 1812–1826

    Article  PubMed  CAS  Google Scholar 

  62. Collignon J, Varlet I, Robertson EJ (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381: 155–158

    Article  PubMed  CAS  Google Scholar 

  63. Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H (1996) Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381: 151–155

    Article  PubMed  CAS  Google Scholar 

  64. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94: 287–297

    Article  PubMed  CAS  Google Scholar 

  65. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95: 829–837

    Article  PubMed  CAS  Google Scholar 

  66. Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, O’Byrne P, Tamura G, Jordana M, Shirato K (1996) Transforming growth factor beta 1 (TGF beta 1) gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol 15: 404–409

    PubMed  CAS  Google Scholar 

  67. Gurdon JB, Harger P, Mitchell A, Lemaire P (1994) Activin signalling and response to a morphogen gradient. Nature 371: 487–492

    Article  PubMed  CAS  Google Scholar 

  68. Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X (1996) Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 178: 198–202

    Article  PubMed  CAS  Google Scholar 

  69. Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews LM, Schneider MD, Hamilton SL, Matzuk MM (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391: 489–492

    Article  PubMed  CAS  Google Scholar 

  70. Nakajima Y, Yamagishi T, Nakamura H, Markwald RR, Krug EL (1998) An autocrine function for transforming growth factor (TGF)-beta3 in the transformation of atrioventricular canal endocardium into mesenchyme during chick heart development. Dev Biol 194: 99–113

    Article  PubMed  CAS  Google Scholar 

  71. MacLellan WR, Brand T, Schneider MD (1993) Transforming growth factor-beta in cardiac ontogeny and adaptation. Circ Res 73: 783–791

    Article  PubMed  CAS  Google Scholar 

  72. Engelmann GL, Grutkoski PS (1994) Coordinate TGF-beta receptor gene expression during rat heart development. Cell Mol Biol Res 40: 93–104

    PubMed  CAS  Google Scholar 

  73. Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP, Darrow BJ, Saffitz JE, Doetschman T (1995) Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci USA 92: 12215–12219

    Article  PubMed  CAS  Google Scholar 

  74. Davis LA, Sadler TW (1981) Effects of vitamin A on endocardial cushion development in the mouse heart. Teratology 24: 139–148

    Article  PubMed  CAS  Google Scholar 

  75. Kastner P, Messaddeq N, Mark M, Wendling O, Grondona JM, Ward S, Ghyselinck N, Chambon P (1997) Vitamin A deficiency and mutations of RXRalpha, RXRbeta and RARalpha lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124: 4749–4758

    PubMed  CAS  Google Scholar 

  76. Akhurst RJ, Lehnert SA, Faissner A, Duffie E (1990) TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development 108: 645–656

    PubMed  CAS  Google Scholar 

  77. Millan FA, Denhez F, Kondaiah P, Akhurst RJ (1991) Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development 111: 131–143

    PubMed  CAS  Google Scholar 

  78. Mahmood R, Flanders KC, Morriss-Kay GM (1992) Interactions between retinoids and TGF betas in mouse morphogenesis. Development 115: 67–74

    PubMed  CAS  Google Scholar 

  79. Anderson PA (1989) Maturation and cardiac contractility. Cardiol Clin 7: 209–225

    PubMed  CAS  Google Scholar 

  80. Engelmann GL, Boehm KD, Birchenall-Roberts MC, Ruscetti FW (1992) Transforming growth factor-beta 1 in heart development. Mech Dev 38: 85–97

    Article  PubMed  CAS  Google Scholar 

  81. Kocher O, Madri JA (1989) Modulation of actin mRNAs in cultured vascular cells by matrix components and TGF-beta 1. In Vitro Cell Dev Biol 25: 424–434

    Article  PubMed  CAS  Google Scholar 

  82. Hales AM, Schulz MW, Chamberlain CG, McAvoy JW (1994) TGF-beta 1 induces lens cells to accumulate alpha-smooth muscle actin, a marker for subcapsular cataracts. Curr Eye Res 13: 885–890

    Article  PubMed  CAS  Google Scholar 

  83. Grace AA, Grainger DJ, Mao L, Ross J, Chien KR (1996) RXR-alpha dependent signalling pathways are required for the activation of TGF-beta during cardiac growth and hypertrophy. Circulation 94: 3229

    Google Scholar 

  84. Guyton AC (1991) Textbook of medical physiology. W.B. Saunders, London

    Google Scholar 

  85. Hautmann MB, Madsen CS, Owens GK (1997) A transforming growth factor beta (TGFbeta) control dement drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. J Biol Chem 272: 10948–10956

    Article  PubMed  CAS  Google Scholar 

  86. Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86: 435–444

    Article  PubMed  CAS  Google Scholar 

  87. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62: 999–1006

    Article  PubMed  CAS  Google Scholar 

  88. Grainger DJ, Metcalfe JC, Grace AA, Mosedale DE (1998) Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo. J Cell Sci 111:2977–2988

    PubMed  CAS  Google Scholar 

  89. Rockman HA, Wachhorst SP, Mao L, Ross J Jr (1994) ANG II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice. Am J Physiol 266: H2468–2475

    Google Scholar 

  90. Takahashi N, Calderone A, Izzo NJ, Jr., Maki TM, Marsh JD, Colucci WS (1994) Hypertrophie stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest 94: 1470–1476

    Article  PubMed  CAS  Google Scholar 

  91. Villarreal FJ, Dillmann WH (1992) Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am J Physiol 262: H1861–1866

    Google Scholar 

  92. Wunsch M, Sharma HS, Markert T, Bernotat-Danielowski S, Schott RJ, Kremer P, Bleese N, Schaper W (1991) In situ localization of transforming growth factor beta 1 in porcine heart: enhanced expression after chronic coronary artery constriction. J Mol Cell Cardiol 23: 1051–1062

    Article  PubMed  CAS  Google Scholar 

  93. Nishikawa K (1998) Angiotensin ATI receptor antagonism and protection against cardiovascular end-organ damage. J Hum Hypertens 12: 301–309

    Article  PubMed  CAS  Google Scholar 

  94. Hudlicka O, Brown MD (1996) Postnatal growth of the heart and its blood vessels. J Vasc Res 33: 266–287

    Article  PubMed  CAS  Google Scholar 

  95. Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG (1997) Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophie cardiomyopathy. Circulation 96: 874–881

    Article  PubMed  CAS  Google Scholar 

  96. Patel B, Khaliq A, Jarvis-Evans J, McLeod D, Mackness M, Boulton M (1994) Oxygen regulation of TGF-beta 1 mRNA in human hepatoma (Hep G2) cells. Biochem Mol Biol Int 34: 639–644

    PubMed  CAS  Google Scholar 

  97. Behzadian MA, Wang XL, Shabrawey M, Caldwell RB (1998) Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-beta. Glia 24: 216–225

    Article  PubMed  CAS  Google Scholar 

  98. Vodovotz Y, Geiser AG, Chesler L, Letterio JJ, Campbell A, Lucia MS, Sporn MB, Roberts AB (1996) Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse. J Exp Med 183: 2337–2342

    Article  PubMed  CAS  Google Scholar 

  99. Vodovotz Y (1997) Control of nitric oxide production by transforming growth factor-betal: mechanistic insights and potential relevance to human disease. Nitrie Oxide 1: 3–17

    Article  CAS  Google Scholar 

  100. Yamamoto K, Dang QN, Kelly RA, Lee RT (1998) Mechanical strain suppresses inducible nitric-oxide synthase in cardiac myocytes. J Biol Chem 273: 11862–11866

    Article  PubMed  CAS  Google Scholar 

  101. Ying WZ, Sanders PW (1998) Dietary salt enhances glomerular endothelial nitric oxide synthase through TGF-beta1. Am J Physiol 275: F18–24

    Google Scholar 

  102. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140: 1097–1103

    PubMed  CAS  Google Scholar 

  103. Poole TJ, Coffin JD (1989) Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251: 224–231

    Article  PubMed  CAS  Google Scholar 

  104. Topouzis S, Majesky MW (1996) Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol 178: 430–445

    Article  CAS  Google Scholar 

  105. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8: 21–43

    Article  PubMed  CAS  Google Scholar 

  106. Yang EY, Moses HL (1990) Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111: 731–741

    Article  PubMed  CAS  Google Scholar 

  107. Ribatti D, Vacca A, Roncali L, Dammacco F (1991) Angiogenesis under normal and pathological conditions. Haematologica 76: 311–320

    PubMed  CAS  Google Scholar 

  108. Fajardo LF, Prionas SD, Kwan HH, Kowalski J, Allison AC (1996) Transforming growth factor betal induces angiogenesis in vivo with a threshold pattern. Lab Invest 74: 600–608

    PubMed  CAS  Google Scholar 

  109. Lehnert SA, Akhurst RJ (1988) Embryonic expression pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development 104: 263–273

    PubMed  CAS  Google Scholar 

  110. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121: 1845–1854

    PubMed  CAS  Google Scholar 

  111. Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179: 297–302

    Article  PubMed  CAS  Google Scholar 

  112. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massagué J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267: 19027–19030

    PubMed  CAS  Google Scholar 

  113. ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, Heldin CH, Miyazono K (1993) Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8: 2879–2887

    PubMed  CAS  Google Scholar 

  114. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13: 189–195

    Article  PubMed  CAS  Google Scholar 

  115. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8: 345–351

    Article  PubMed  CAS  Google Scholar 

  116. Shovlin CL (1997) Molecular defects in rare bleeding disorders: hereditary haemorrhagic telangiectasia. Thromb Haemost 78: 145–150

    PubMed  CAS  Google Scholar 

  117. Norgaard P, Hougaard S, Poulsen HS, Spang-Thomsen M (1995) Transforming growth factor beta and cancer. Cancer Treat Rev 21: 367–403

    Article  PubMed  CAS  Google Scholar 

  118. Markowitz SD, Roberts AB (1996) Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 7: 93–102

    Article  PubMed  CAS  Google Scholar 

  119. Choi YH, Choi KC, Park YE (1997) Relationship of transforming growth factor beta 1 to angiogenesis in gastric carcinoma. J Korean Med Sci 12: 427–432

    PubMed  CAS  Google Scholar 

  120. Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A (1998) Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37: 19–29

    Article  PubMed  CAS  Google Scholar 

  121. de Jong JS, van Diest PJ, van der Valk P, Baak JP (1998) Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J Pathol 184: 53–57

    Article  PubMed  Google Scholar 

  122. Kocher O, Skalli O, Cerutti D, Gabbiani F, Gabbiani G (1985) Cytoskeletal features of rat aortic cells during development. An electron microscopic, immunohistochemical, and biochemical study. Circ Res 56: 829–838

    Article  PubMed  CAS  Google Scholar 

  123. Owens GK, Thompson MM (1986) Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem 261: 13373–13380

    PubMed  CAS  Google Scholar 

  124. Seidel CL, Allen JC (1979) Pharmacologic characteristics and actomyosin content of aorta from neonatal rats. Am J Physiol 237: C81–86

    Google Scholar 

  125. Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP (2000) Dietary fat and reduced levels of TGF-beta 1 act synergistically to promote activation of the vascular endothelium and formation of vascular lipid lesions. J Cell Sci 113: 2355–2361

    PubMed  CAS  Google Scholar 

  126. Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear-stress induces endothelial transforming growth-factor-beta-1 transcription and production — modulation by potassium channel blockade. J Clin Invest 95: 1363–1369

    Article  PubMed  CAS  Google Scholar 

  127. Ueba H, Kawakami M, Yaginuma T (1997) Shear stress as an inhibitor of vascular smooth muscle cell proliferation. Role of transforming growth factor-beta 1 and tissuetype plasminogen activator. Arterioscler Thromb Vasc Biol 17: 1512–1516

    Article  PubMed  CAS  Google Scholar 

  128. Mii S, Ware JA, Kent KC (1993) Transforming growth factor-beta inhibits human vascular smooth muscle cell growth and migration. Surgery 114: 464–470

    PubMed  CAS  Google Scholar 

  129. Morisaki N, Kawano M, Koyama N, Koshikawa T, Umemiya K, Saito Y, Yoshida S (1991) Effects of transforming growth factor-beta 1 on growth of aortic smooth muscle cells. Influences of interaction with growth factors, cell state, cell phenotype, and cell cycle. Atherosclerosis 88: 227–234

    Article  PubMed  CAS  Google Scholar 

  130. Grainger DJ, Kemp PR, Witchell CM, Weissberg PL, Metcalfe JC (1994) Transforming growth factor beta decreases the rate of proliferation of rat vascular smooth muscle cells by extending the G2 phase of the cell cycle and delays the rise in cyclic AMP before entry into M phase. Biochem J 299: 227–235

    PubMed  CAS  Google Scholar 

  131. RayChaudhury A, D’Amore PA (1991) Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem 47: 224–229

    Article  PubMed  CAS  Google Scholar 

  132. Lefer AM, Tsao P, Aoki N, Palladino MA Jr (1990) Mediation of cardioprotection by transforming growth factor-beta. Science 249: 61–64

    Article  PubMed  CAS  Google Scholar 

  133. Risau W (1995) Differentiation of endothelium. FASEB J 9: 926–933

    PubMed  CAS  Google Scholar 

  134. Pintavorn P, Ballermann BJ (1997) TGF-beta and the endothelium during immune injury. Kidney Int 51: 1401–1412

    Article  PubMed  CAS  Google Scholar 

  135. Grainger DJ, Metcalfe JC (1997) Transforming growth factor-beta and cardiovascular protection. In: GM Rubanyi, VJ Dzau (eds): The endothelium in clinical practice. Source and target of novel therapies. Marcel Dekker, Inc., New York, 203–243

    Google Scholar 

  136. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin MY, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta-l gene results in multifocal inflammatory disease. Nature 359: 693–699

    Article  PubMed  CAS  Google Scholar 

  137. Grotendorst GR, Smale G, Pencev D (1989) Production of transforming growth factor beta by human peripheral blood monocytes and neutrophils. J Cell Physiol 140: 396–402

    Article  PubMed  CAS  Google Scholar 

  138. Rodan GA (1998) Control of bone formation and résorption: biological and clinical perspective. J Cell Biochem 31: 55–61

    Article  Google Scholar 

  139. Wronski TJ, Cintron M, Doherty AL, Dann LM (1988) Estrogen treatment prevents osteopenia and depresses bone turnover in ovariectomized rats. Endocrinology 123: 681–686

    Article  PubMed  CAS  Google Scholar 

  140. Black LJ, Sato M, Rowley ER, Magee DE, Bekele A, Williams DC, Cullinan GJ, Bendele R, Kauffman RF, Bensch WR et al (1994) Raloxifene (LY139481 HCl) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93: 63–69

    Article  PubMed  CAS  Google Scholar 

  141. Yang NN, Bryant HU, Hardikar S, Sato M, Galvin RJ, Glasebrook AL, Termine JD (1996) Estrogen and raloxifene stimulate transforming growth factor-beta 3 gene expression in rat bone: a potential mechanism for estrogen-or raloxifene-mediated bone maintenance. Endocrinology 137: 2075–2084

    Article  PubMed  CAS  Google Scholar 

  142. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV (1998) Genotypic variation in the transforming growth factor-beta 1 gene: association with transforming growth factor-beta 1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66: 1014–1020

    Article  PubMed  CAS  Google Scholar 

  143. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND and Spector TD (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8: 93–97

    Article  PubMed  CAS  Google Scholar 

  144. Li B, Khanna A, Sharma V, Singh T, Suthanthiran M, August P (1999) TGF-betal DNA polymorphisms, protein levels, and blood pressure. Hypertension 33: 271–275

    Article  PubMed  CAS  Google Scholar 

  145. Cambien F, Ricard S, Troesch A, Mallet C, Générénaz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O (1996) Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Témoin de l’Infarctus du Myocarde (ECTIM) Study. Hypertension 28: 881–887

    Article  PubMed  CAS  Google Scholar 

  146. Syrris P, Carter ND, Metcalfe JC, Kemp PR, Grainger DJ, Kaski JC, Crossman DC, Francis SE, Gunn J, Jeffery S et al (1998) Transforming growth factor-beta 1 gene polymorphisms and coronary artery disease. Clin Sci (Colch) 95: 659–667

    Article  CAS  Google Scholar 

  147. Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y (2000) Association of a T29→C polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101: 2783–2787

    Article  PubMed  CAS  Google Scholar 

  148. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF (1997) A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 20: 289–294

    Article  PubMed  CAS  Google Scholar 

  149. Hobbs K, Negri J, Klinnert M, Rosenwasser LJ, Borish L (1998) Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am J Respir Crit Care Med 158: 1958–1962

    PubMed  CAS  Google Scholar 

  150. Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM, Chauhan A (1995) The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med 1: 74–79

    Article  PubMed  CAS  Google Scholar 

  151. Charpentier A, Groves S, Simmons-Menchaca M, Turley J, Zhao B, Sanders BG, Kline K (1993) RRR-alpha-tocopheryl succinate inhibits proliferation and enhances secretion of transforming growth factor-beta (TGF-beta) by human breast cancer cells. Nutr Cancer 19:225–239

    Article  PubMed  CAS  Google Scholar 

  152. Turley JM, Funakoshi S, Ruscetti FW, Kasper J, Murphy WJ, Longo DL, Birchenall-Roberts MC (1995) Growth inhibition and apoptosis of RL human B lymphoma cells by vitamin E succinate and retinoic acid: role for transforming growth factor beta. Cell Growth Differ 6: 655–663

    PubMed  CAS  Google Scholar 

  153. Colletta AA, Wakefield LM, Howell FV, van Roozendaal KE, Danielpour D, Ebbs SR, Sporn MB, Baum M (1990) Anti-oestrogens induce the secretion of active transforming growth factor beta from human fetal fibroblasts. Br J Cancer 62: 405–409

    Article  PubMed  CAS  Google Scholar 

  154. Grainger DJ, Weissberg PL, Metcalfe JC (1993) Tamoxifen decreases the rate of proliferation of rat vascular smooth-muscle cells in culture by inducing production of transforming growth factor beta. Biochem J 294: 109–112

    PubMed  CAS  Google Scholar 

  155. Grainger DJ, Metcalfe JC (1996) Tamoxifen: teaching an old drug new tricks? Nat Med 2: 381–385

    Article  PubMed  CAS  Google Scholar 

  156. Nakajima Y, Miyazono K, Kato M, Takase M, Yamagishi T, Nakamura H (1997) Extracellular fibrillar structure of latent TGF beta binding protein-1: role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion tissue formation in mouse embryonic heart. J Cell Biol 136: 193–204

    Article  PubMed  CAS  Google Scholar 

  157. Sinha S, Nevett C, Shuttleworth CA, Kielty CM (1998) Cellular and extracellular biology of the latent transforming growth factor-beta binding proteins. Matrix Biol 17: 529–545

    Article  PubMed  CAS  Google Scholar 

  158. Nakajima Y, Miyazono K, Nakamura H (1999) Immunolocalization of latent transforming growth factor-beta binding protein-1 (LTBP1) during mouse development: possible roles in epithelial and mesenchymal cytodifferentiation. Cell Tissue Res 295: 257–267

    Article  PubMed  CAS  Google Scholar 

  159. Pedrozo HA, Schwartz Z, Gomez R, Ornoy A, Xin-Sheng W, Dallas SL, Bonewald LF, Dean DD, Boyan BD (1998) Growth plate chondrocytes store latent transforming growth factor (TGF)-beta 1 in their matrix through latent TGF-beta 1 binding protein-1. J Cell Physiol 177: 343–354

    Article  PubMed  CAS  Google Scholar 

  160. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352: 337–339

    Article  PubMed  CAS  Google Scholar 

  161. Green MC, Sweet HO, Bunker LE (1976) Tight-skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am J Pathol 82: 493–512

    PubMed  CAS  Google Scholar 

  162. Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM, Jimenez SA (1996) A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res 6: 300–313

    Article  PubMed  CAS  Google Scholar 

  163. Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA, Jimenez SA (1998) The Tight skin mouse: demonstration of mutant fibri11in-1 production and assembly into abnormal microfibrils. J Cell Biol 140: 1159–1166

    Article  PubMed  CAS  Google Scholar 

  164. Byrne CD, Wareham NJ, Martensz ND, Humphries SE, Metcalfe JC, Grainger DJ (1998) Increased PAI activity and PAI-1 antigen occurring with an oral fat load: associations with PAI-1 genotype and plasma active TGF-beta levels. Atherosclerosis 140: 45–53

    Article  PubMed  CAS  Google Scholar 

  165. Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin DB (1990) Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol 111: 757–763

    Article  PubMed  CAS  Google Scholar 

  166. Kojima S, Vernooy R, Moscatelli D, Amanuma H, Rifkin DB (1995) Lipopolysaccharide inhibits activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Physiol 163: 210–219

    Article  PubMed  CAS  Google Scholar 

  167. Nackman GB, Bech FR, Filiinger MF, Wagner RJ, Cronenwett JL (1996) Endothelial cells modulate smooth muscle cell morphology by inhibition of transforming growth factor-beta 1 activation. Surgery 120: 418–425; discussion 425-426

    Article  PubMed  CAS  Google Scholar 

  168. Rifkin DB, Mazzieri R, Munger JS, Noguera I, Sung J (1999) Proteolytic control of growth factor availability. Apmis 107: 80–85

    Article  PubMed  CAS  Google Scholar 

  169. Dawson S, Hamsten A, Wiman B, Henney A, Humphries S (1991) Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma Plasminogen activator inhibitor-1 activity. Arterioscler Thromb 11: 183–190

    Article  PubMed  CAS  Google Scholar 

  170. Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S (1996) Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 93: 106–110

    Article  PubMed  CAS  Google Scholar 

  171. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K et al (1996) Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 2: 800–803

    Article  PubMed  CAS  Google Scholar 

  172. Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I (1997) Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 46: 860–867

    Article  PubMed  CAS  Google Scholar 

  173. Woodhouse PR, Meade TW, Khaw KT (1997) Plasminogen activator inhibitor-1, the acute phase response and vitamin C. Atherosclerosis 133: 71–76

    Article  PubMed  CAS  Google Scholar 

  174. Mehta JL, Saldeen TG, Rand K (1998) Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol 31: 1217–1225

    Article  PubMed  CAS  Google Scholar 

  175. Kojima S, Harpel PC, Rifkin DB (1991) Lipoprotein (a) inhibits the generation of transforming growth factor beta: an endogenous inhibitor of smooth muscle cell migration. J Cell Biol 113: 1439–1445

    Article  PubMed  CAS  Google Scholar 

  176. Grainger DJ, Kirschenlohr HL, Metcalfe JC, Weissberg PL, Wade DP, Lawn RM (1993) Proliferation of human smooth muscle cells promoted by lipoprotein(a). Science 260: 1655–1658

    Article  PubMed  CAS  Google Scholar 

  177. Miyata M, Biro S, Kaieda H, Tanaka H (1995) Lipoprotein(a) stimulates the proliferation of cultured human arterial smooth muscle cells through two pathways. FEBS Lett 377. 493–496

    Article  PubMed  CAS  Google Scholar 

  178. Sato Y, Kobori S, Sakai M, Yano T, Higashi T, Matsumura T, Morikawa W, Terano T, Miyazaki A, Horiuchi S et al (1996) Lipoprotein a) induces cell growth in rat peritoneal macrophages through inhibition of transforming growth factor-beta activation. Atherosclerosis 125:15–26

    Article  PubMed  CAS  Google Scholar 

  179. Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC (1994) Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature 370: 460–462

    Article  PubMed  CAS  Google Scholar 

  180. Lawn RM, Pearle AD, Kunz LL, Rubin EM, Reckless J, Metcalfe JC, Grainger DJ (1996) Feedback mechanism of focal vascular lesion formation in transgenic apolipoprotein(a) mice. J Biol Chem 271: 31367–31371

    Article  PubMed  CAS  Google Scholar 

  181. Carmeliet P, Collen D (1998) Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 91: 255–285

    Article  PubMed  CAS  Google Scholar 

  182. Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Tomita N, Ohue M, Hayakawa T (1997) Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett 112: 251–256

    Article  PubMed  CAS  Google Scholar 

  183. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE (1998) Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58: 5329–5332

    PubMed  CAS  Google Scholar 

  184. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338

    Article  PubMed  CAS  Google Scholar 

  185. McCaffrey TA, Du B, Consigli S, Szabo P, Bray PJ, Hartner L, Weksler BB, Sanborn TA, Bergman G, Bush HL Jr (1997) Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 100: 2182–2188

    Article  PubMed  CAS  Google Scholar 

  186. McCaffrey TA, Consigli S, Du B, Falcone DJ, Sanborn TA, Spokojny AM, Bush HL, Jr. (1995) Decreased type Il/type I TGF-beta receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-betal. J Clin Invest 96: 2667–2675

    Article  PubMed  CAS  Google Scholar 

  187. Li G, Li RK, Mickle DA, Weisel RD, Merante F, Ball WT, Christakis GT, Cusimano RJ, Williams WG (1998) Elevated insulin-like growth factor-I and transforming growth factor-beta 1 and their receptors in patients with idiopathic hypertrophic obstructive cardiomyopathy. A possible mechanism. Circulation 98:II 144–149

    CAS  Google Scholar 

  188. Wang T, Donahoe PK, Zervos AS (1994) Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265: 674–676

    Article  PubMed  CAS  Google Scholar 

  189. Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, Feeley R, Gimeno CJ, Woolf EA, Tayber O et al (1997) Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci USA 94: 9314–9319

    Article  PubMed  CAS  Google Scholar 

  190. Schwartz C, Mitchell J (1962) Observations on the localisation of arterial plaques. Circ Res 11: 63–73

    PubMed  CAS  Google Scholar 

  191. Friedman MH, Brinkman AM, Qin JJ, Seed WA (1993) Relation between coronary artery geometry and the distribution of early sudanophilic lesions. Atherosclerosis 98: 193–199

    Article  PubMed  CAS  Google Scholar 

  192. Davies MJ, McKenna WJ (1995) Hypertrophie cardiomyopathy — pathology and pathogenesis. Histopathology 26: 493–500

    Article  PubMed  CAS  Google Scholar 

  193. Towbin JA (1998) The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 10: 131–139

    Article  PubMed  CAS  Google Scholar 

  194. Bonne G, Carrier L, Richard P, Hainque B, Schwartz K (1998) Familial hypertrophie cardiomyopathy: from mutations to functional defects. Circ Res 83: 580–593

    Article  PubMed  CAS  Google Scholar 

  195. Schlüter KD, Zhou XJ, Piper HM (1995) Induction of hypertrophie responsiveness to isoproterenol by TGF-beta in adult rat cardiomyocytes. Am J Physiol 269: C1311–1316

    Google Scholar 

  196. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS (1998) Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 40: 352–363

    Article  PubMed  CAS  Google Scholar 

  197. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA (1994) Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension 23: 587–592

    Article  PubMed  CAS  Google Scholar 

  198. Li JM, Brooks G (1997) Differential protein expression and subcellular distribution of TGFbetal, beta2 and beta3 in cardiomyocytes during pressure overload-induced hypertrophy. J Mol Cell Cardiol 29: 2213–2224

    Article  PubMed  CAS  Google Scholar 

  199. Iwai N, Shimoike H, Kinoshita M (1995) Genes up-regulated in hypertrophied ventricle. Biochem Biophys Res Commun 209: 527–534

    Article  PubMed  CAS  Google Scholar 

  200. Nunes I, Gleizes PE, Metz CN, Rifkin DB (1997) Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136: 1151–1163

    Article  PubMed  CAS  Google Scholar 

  201. Sun Y, Zhang JQ, Zhang J, Ramires FJ (1998) Angiotensin II, transforming growth fac-tor-betal and repair in the infarcted heart. J Mol Cell Cardiol 30: 1559–1569

    Article  PubMed  CAS  Google Scholar 

  202. Hao J, Ju H, Zhao S, Junaid A, Fleur TS, Dixon IM (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31: 667–678

    Article  PubMed  CAS  Google Scholar 

  203. Yue P, Massie BM, Simpson PC, Long CS (1998) Cytokine expression increases in non-myocytes from rats with postinfarction heart failure. Am J Physiol 275: H250–258

    Google Scholar 

  204. Sekiguchi M, Yu ZX, Hasumi M, Hiroe M, Morimoto S, Nishikawa T (1985) Histopathologic and ultrastructural observations of acute and convalescent myocarditis: a serial endomyocardial biopsy study. Heart Vessels 1: 143–153

    Article  CAS  Google Scholar 

  205. Okada R, Kawai S, Kasyuya H (1989) Nonspecific myocarditis: a statistical and clinicopathological study of autopsy cases. Jpn Circ J 53: 40–48

    Article  PubMed  CAS  Google Scholar 

  206. Clowes GH, Jr., Farrington GH, Zuschneid W, Cossette GR, Saravis C (1970) Circulating factors in the etiology of pulmonary insufficiency and right heart failure accompanying severe sepsis (peritonitis). Ann Surg 171: 663–678

    Article  PubMed  Google Scholar 

  207. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  CAS  Google Scholar 

  208. Assoian RK, Sporn MB (1986) Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 102: 1217–1223

    Article  PubMed  CAS  Google Scholar 

  209. Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R (1990) TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515–524

    Article  PubMed  CAS  Google Scholar 

  210. Stouffer GA, LaMarre J, Gonias SL, Owens GK (1993) Activated alpha 2-macroglobulin and transforming growth factor-beta 1 induce a synergistic smooth muscle cell proliferative response. J Biol Chem 268: 18340–18344

    PubMed  CAS  Google Scholar 

  211. Grainger DJ, Witchell CM, Weissberg PL, Metcalfe JC (1994) Mitogens for adult rat aortic vascular smooth muscle cells in serum-free primary culture. Cardiovasc Res 28: 1238–1242

    Article  PubMed  CAS  Google Scholar 

  212. Owens GK, Geisterfer AA, Yang YW, Komoriya A (1988) Transforming growth factorbeta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 107: 771–780

    Article  PubMed  CAS  Google Scholar 

  213. Björkerud S (1991) Effects of transforming growth factor-beta 1 on human arterial smooth muscle cells in vitro. Arterioscler Thromb 11: 892–902

    Article  PubMed  Google Scholar 

  214. Kirschenlohr HL, Metcalfe JC, Weissberg PL, Grainger DJ (1995) Proliferation of human aortic vascular smooth muscle cells in culture is modulated by active TGF beta. Cardiovasc Res 29: 848–855

    PubMed  CAS  Google Scholar 

  215. Nabel EG, Shum L, Pompili VJ, Yang ZY, San H, Shu HB, Liptay S, Gold L, Gordon D, Derynck R et al (1993) Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA 90: 10759–10763

    Article  PubMed  CAS  Google Scholar 

  216. Schulick AH, Taylor AJ, Zuo W, Qiu CB, Dong G, Woodward RN, Agah R, Roberts AB, Virmani R, Dichek DA (1998) Overexpression of transforming growth factor beta1 in arterial endothelium causes hyperplasia, apoptosis, and cartilaginous metaplasia. Proe Natl Acad Sci USA 95: 6983–6988

    Article  CAS  Google Scholar 

  217. de Meyer GR, Bult H (1997) Mechanisms of neointima formation — lessons from experimental models. Vase Med 2: 179–189

    Google Scholar 

  218. Breslow JL (1996) Mouse models of atherosclerosis. Science 272: 685–688

    Article  PubMed  CAS  Google Scholar 

  219. Wolf YG, Rasmussen LM, Ruoslahti E (1994) Antibodies against transforming growth factor-beta 1 suppress intimai hyperplasia in a rat model. J Clin Invest 93: 1172–1178

    Article  PubMed  CAS  Google Scholar 

  220. Kanzaki T, Tamura K, Takahashi K, Saito Y, Akikusa B, Oohashi H, Kasayuki N, Ueda M, Morisaki N (1995) In vivo effect of TGF-beta 1. Enhanced intimai thickening by administration of TGF-beta 1 in rabbit arteries injured with a balloon catheter. Arterioseler Thromb Vase Biol 15: 1951–1957

    Article  CAS  Google Scholar 

  221. Grainger DJ, Witchell CM, Metcalfe JC (1995) Tamoxifen elevates transforming growth factor-beta and suppresses diet-induced formation of lipid lesions in mouse aorta. Nat Med 1: 1067–1073

    Article  PubMed  CAS  Google Scholar 

  222. Reckless J, Metcalfe JC, Grainger DJ (1997) Tamoxifen decreases cholesterol sevenfold and abolishes lipid lesion development in apolipoprotein E knockout mice. Cireulation 95:1542–1548

    Article  CAS  Google Scholar 

  223. Perez-Perez GI, Shepherd VL, Morrow JD, Blaser MJ (1995) Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect Immun 63: 1183–1187

    PubMed  CAS  Google Scholar 

  224. Schneiderman J, Sawdey MS, Keeton MR, Bordin GM, Bernstein EF, Dilley RB, Loskut-off DJ (1992) Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proe Natl Aead Sci USA 89: 6998–7002

    Article  CAS  Google Scholar 

  225. Soeda S, Tsunoda T, Kurokawa Y, Shimeno H (1998) Tumor necrosis factor-alpha-induced release of plasminogen activator inhibitor-1 from human umbilical vein endothelial cells: involvement of intracellular ceramide signaling event. Bioehim Biophys Acta 1448: 37–45

    Article  CAS  Google Scholar 

  226. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2: 275–281

    Article  PubMed  CAS  Google Scholar 

  227. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394: 894–897

    Article  PubMed  CAS  Google Scholar 

  228. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Cireulation 92: 1565–1569

    CAS  Google Scholar 

  229. Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, Sukhova GK, Lee RT (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7: 330–335

    Article  PubMed  CAS  Google Scholar 

  230. Wurdeman RL, Hilleman DE, Mooss AN (1998) Restenosis, the Achilles’ heel of coronary angioplasty. Pharmacotherapy 18: 1024–1040

    PubMed  CAS  Google Scholar 

  231. Schwartz RS (1998) Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol 81: 14E–17E

    Article  PubMed  CAS  Google Scholar 

  232. Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA (1991) Production of transforming growth factor-beta-1 during repair of arterial injury. J Clin Invest 88: 904–910

    Article  PubMed  CAS  Google Scholar 

  233. Grant MB, Wargovich TJ, Bush DM, Player DW, Caballero S, Foegh M, Spoerri PE (1999) Expression of IGF-1, IGF-1 receptor and TGF-beta following balloon angioplasty in atherosclerotic and normal rabbit iliac arteries: an immunocytochemical study. Regul Pept 79: 47–53

    Article  PubMed  CAS  Google Scholar 

  234. Kosuga K, Tamai H, Ueda K, Hsu YS, Ono S, Tanaka S, Doi T, Myou UW, Motohara S, Uehata H (1997) Effectiveness of tranilast on restenosis after directional coronary atherectomy. Am Heart J 134: 712–718

    Article  PubMed  CAS  Google Scholar 

  235. Ward MR, Sasahara T, Agrotis A, Dilley RJ, Jennings GL, Bobik A (1998) Inhibitory effects of tranilast on expression of transforming growth factor-beta isoforms and receptors in injured arteries. Atherosclerosis 137: 267–275

    Article  PubMed  CAS  Google Scholar 

  236. Nikol S, Isner JM, Pickering JG, Kearney M, Leclerc G, Weir L (1992) Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions. J Clin Invest 90: 1582–1592

    Article  PubMed  CAS  Google Scholar 

  237. Nikol S, Weir L, Sullivan A, Sharaf B, White CJ, Zemel G, Hartzler G, Stack R, Leclerc G, Isner JM (1994) Persistently increased expression of the transforming growth-factor-beta-1 gene in human vascular restenosis — analysis of 62 patients with one or more episode of restenosis. Cardiovasc Pathol 3: 57–64

    Article  Google Scholar 

  238. O’Brien ER, Bennett KL, Garvin MR, Zderic TW, Hinohara T, Simpson JB, Kimura T, Nobuyoshi M, Mizgala H, Purchio A et al (1996) Beta ig-h3, a transforming growth factor-beta-inducible gene, is overexpressed in atherosclerotic and restenotic human vascular lesions. Arterioscler Thromb Vase Biol 16: 576–584

    Article  Google Scholar 

  239. Frater-Schroder M, Muller G, Birchmeier W, Bohlen P (1986) Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137: 295–302

    Article  PubMed  CAS  Google Scholar 

  240. Lehmann-Bruinsma K, Higley H, Powell JS (1994) Transforming growth factor-beta(2) (TGF-beta(2)) suppression of smooth-muscle cell (SMC) proliferation after balloon angioplasty of rat carotid arteries. Clin Res 42: A4

    Google Scholar 

  241. Swales J (1994) Textbook of hypertension. Blackwell Scientific, Oxford

    Google Scholar 

  242. Lee R, Forrest JB, Garfield RE, Daniel EE (1983) Ultrastructural-changes in mesentericarteries from spontaneously hypertensive rats — a morphometric study. Blood Vessels 20: 72–91

    PubMed  CAS  Google Scholar 

  243. de Mey J, Daemen M, Boonen H, Bosman FT, Dijkstra EH, Fazzi GE, Janssen G, Schiffers P, Struykerboudier H, Vrijdag M (1991) In vivo DNA-synthesis is not uniformly increased in arterial smooth-muscle of young spontaneously hypertensive rats. J Hyper-tens 9: 695–701

    Article  Google Scholar 

  244. Owens GK (1989) Control of hypertrophic versus hyperplastic growth of vascular smooth-muscle cells. Am J Physiol 257: H1755–H1765

    PubMed  CAS  Google Scholar 

  245. Agrotis A, Saids J, Dilley R, Bray P, Bobik A (1995) Transforming growth factor-beta 1 and the development of vascular hypertrophy in hypertension.Blood Press (Suppl) 2: 43–48

    CAS  Google Scholar 

  246. Botney MD, Bahadori L, Gold LI (1994) Vascular remodeling in primary pulmonary hypertension. Potential role for transforming growth factor-beta. Am J Pathol 144: 286–295

    PubMed  CAS  Google Scholar 

  247. Kim S, Ohta K, Hamaguchi A, Omura T, Yukimura T, Miura K, Inada Y, Wada T, Ishimura Y, Chatani F et al (1994) Contribution of renal angiotensin II type I receptor to gene expressions in hypertension-induced renal injury. Kidney Int 46: 1346–1358

    Article  PubMed  CAS  Google Scholar 

  248. Tamaki K, Okuda S, Nakayama M, Yanagida T, Fujishima M (1996) Transforming growth factor-beta 1 in hypertensive renal injury in Dahl salt-sensitive rats. J Am Soc Nephrol 7: 2578–2589

    PubMed  CAS  Google Scholar 

  249. Fukuda N, Kubo A, Izumi Y, Soma M, Kanmatsuse K (1995) Distinct expression of transforming growth factor-beta receptor subtypes on vascular smooth muscle cells from spontaneously hypertensive rats and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol (Suppl) 1: S120–122

    Article  Google Scholar 

  250. Porreca E, Di Febbo C, Mincione G, Reale M, Baccante G, Guglielmi MD, Cuccurullo F, Colletta G (1997) Increased transforming growth factor-beta production and gene expression by peripheral blood monocytes of hypertensive patients. Hypertension 30: 134–139

    Article  PubMed  CAS  Google Scholar 

  251. Maron BJ, Moller JH, Seidman CE, Vincent GM, Dietz HC, Moss AJ, Sondheimer HM, Pyeritz RE, McGee G, Epstein AE (1998) Impact of laboratory molecular diagnosis on contemporary diagnostic criteria for genetically transmitted cardiovascular diseases:hypertrophic cardiomyopathy, long-QT syndrome, and Marfan syndrome. Circulation 98: 1460–1471

    Article  CAS  Google Scholar 

  252. Sakai LY, Keene DR (1994) Fibrillin — monomers and microfibrils. Meth Enzymol 245: 29–52

    Article  PubMed  CAS  Google Scholar 

  253. Zhou J, Mochizuki T, Smeets H, Antignac C, Laurila P, Depaepe A, Tryggvason K, Reeders ST (1993) Deletion of the paired alpha-5(IV) and alpha-6(IV) collagen genes in inherited smooth-muscle tumors. Science 261: 1167–1169

    Article  PubMed  CAS  Google Scholar 

  254. Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103: 2499–2509

    Article  PubMed  CAS  Google Scholar 

  255. Karonen T, Jeskanen L, Keski-Oja J (1997) Transforming growth factor beta 1 and its latent form binding protein-1 associate with elastic fibres in human dermis: accumulation in actinic damage and absence in anetoderma. Br J Dermatol 137: 51–58

    Article  PubMed  CAS  Google Scholar 

  256. Roberts AB, McCune BK, Sporn MB (1992) TGF-beta: regulation of extracellular matrix. Kidney Int 41: 557–559

    Article  PubMed  CAS  Google Scholar 

  257. Ueki K, Meyer FB, Mellinger JF (1994) Moyamoya disease: the disorder and surgical treatment. Mayo Clin Proc 69: 749–757

    Article  PubMed  CAS  Google Scholar 

  258. Hosoda Y, Ikeda E, Hirose S (1997) Histopathological studies on spontaneous occlusion of the circle of Willis (cerebrovascular moyamoya disease). Clin Neurol Neurosurg 99 Suppl 2: S203–208

    Google Scholar 

  259. von Rokitansky C (1852) Abnormal conditions of the arteries. In: Manual of pathological anatomy. Sydenham Society, London, 261–275

    Google Scholar 

  260. Fukai N, Aoyagi M, Yamamoto M, Sakamoto H, Ogami K, Matsushima Y, Yamamoto K (1994) Human arterial smooth muscle cell strains derived from patients with moyamoya disease: changes in biological characteristics and proliferative response during cellular aging in vitro. Mech Ageing Dev 75: 21–33

    Article  PubMed  CAS  Google Scholar 

  261. Yamamoto M, Aoyagi M, Fukai N, Matsushima Y, Yamamoto K (1998) Differences in cellular responses to mitogens in arterial smooth muscle cells derived from patients with moyamoya disease. Stroke 29: 1188–1193

    Article  PubMed  CAS  Google Scholar 

  262. Yamamoto M, Aoyagi M, Tajima S, Wachi H, Fukai N, Matsushima Y, Yamamoto K (1997) Increase in elastin gene expression and protein synthesis in arterial smooth muscle cells derived from patients with Moyamoya disease. Stroke 28: 1733–1738

    Article  PubMed  CAS  Google Scholar 

  263. Hojo M, Hoshimaru M, Miyamoto S, Taki W, Nagata I, Asahi M, Matsuura N, Ishizaki R, Kikuchi H, Hashimoto N (1998) Role of transforming growth factor-beta 1 in the pathogenesis of moyamoya disease. J Neurosurg 89: 623–629

    Article  PubMed  CAS  Google Scholar 

  264. Yoshimoto T, Houkin K, Takahashi A, Abe H (1996) Angiogenic factors in moyamoya disease. Stroke 27: 2160–2165

    Article  PubMed  CAS  Google Scholar 

  265. Owens GK (1998) Molecular control of vascular smooth muscle cell differentiation. Acta Pbysiol Scand 164: 623–635

    CAS  Google Scholar 

  266. MacLellan WR, Lee TC, Schwartz RJ, Schneider MD (1994) Transforming growth factor-beta response elements of the skeletal alpha-actin gene. Combinatorial action of serum response factor, YY1, and the SV40 enhancer-binding protein, TEF-1. J Biol Chem 269: 16754–16760

    PubMed  CAS  Google Scholar 

  267. Marian AJ (1997) Genetic markers: genes involved in human hypertension. J Cardiovasc Risk 4: 341–345

    Article  PubMed  CAS  Google Scholar 

  268. Grainger DJ, Metcalfe JC (1995) A pivotal role for TGF-beta in atherogenesis? Biol Rev Camb Philos Soc 70: 571–596

    Article  PubMed  CAS  Google Scholar 

  269. Merrilees MJ, Scott L (1994) Antisense S-oligonucleotide against transforming growth factor-beta 1 inhibits proteoglycan synthesis in arterial wall. J Vasc Res 31: 322–329

    Article  PubMed  CAS  Google Scholar 

  270. McDonald CC, Stewart HJ (1991) Fatal myocardial infarction in the Scottish adjuvant tamoxifen trial. The Scottish Breast Cancer Committee. Br Med J 303: 435–437

    Article  CAS  Google Scholar 

  271. McDonald CC, Alexander FE, Whyte BW, Forrest AP, Stewart HJ (1995) Cardiac and vascular morbidity in women receiving adjuvant tamoxifen for breast cancer in a randomised trial. The Scottish Cancer Trials Breast Group. Br Med J 311: 977–980

    Article  CAS  Google Scholar 

  272. Mosedale DE, Metcalfe JC, Grainger DJ (1996) Optimization of immunofluorescence methods by quantitative image analysis. J Histochem Cytochem 44: 1043–1050

    Article  PubMed  CAS  Google Scholar 

  273. López-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massagué J (1991) Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 67: 785–795

    Article  PubMed  Google Scholar 

  274. Leal SM, Liu Q, Huang SS, Huang JS (1997) The type V transforming growth factor beta receptor is the putative insulin-like growth factor-binding protein 3 receptor. J Biol Chem 272: 20572–20576

    Article  PubMed  CAS  Google Scholar 

  275. O’Grady P, Kuo MD, Baldassare JJ, Huang SS, Huang JS (1991) Purification of a new type high-molecular-weight receptor (type-V receptor) of transforming growth-factor-beta (TGF-beta) from bovine liver — identification of the type-V TGF-beta receptor in cultured-cells. J Biol Chem 266: 8583–8589

    PubMed  Google Scholar 

  276. Cheifetz S, Ling N, Guillemin R, Massagué J (1988) A surface component on GH3 pituitary cells that recognizes transforming growth factor-beta, activin, and inhibin. J Biol Chem 263: 17225–17228

    PubMed  CAS  Google Scholar 

  277. Ichijo H, Ronnstrand L, Miyagawa K, Ohashi H, Heldin CH, Miyazono K (1991) Purification of transforming growth factor-beta 1 binding proteins from porcine uterus membranes. J Biol Chem 266: 22459–22464

    PubMed  CAS  Google Scholar 

  278. Olofsson A, Hellman U, Ten Dijke P, Grimsby S, Ichijo H, Morén A, Miyazono K, Heldin CH (1997) Latent transforming growth factor-beta complex in Chinese hamster ovary cells contains the multifunctional cysteine-rich fibroblast growth factor receptor, also termed E-selectin-ligand or MG-160. Biochem J 324: 427–434

    PubMed  CAS  Google Scholar 

  279. Hirai R, Kaji K (1992) Transforming growth factor beta 1-specific binding proteins on human vascular endothelial cells. Exp Cell Res 201: 119–125

    Article  PubMed  CAS  Google Scholar 

  280. MacKay K, Danielpour D (1991) Novel 150-and 180-kDa glycoproteins that bind transforming growth factor (TGF)-beta 1 but not TGF-beta 2 are present in several cell lines. J Biol Chem 266: 9907–9911

    PubMed  CAS  Google Scholar 

  281. MacKay K (1993) Homodimers of the 60 kDa phosphatidylinositol-anchored transforming growth factor-beta 2 binding proteins in FBHEC and MG-63 cells. Growth Factors 8: 187–195

    Article  PubMed  CAS  Google Scholar 

  282. Cheifetz S, Massagué J (1991) Isoform-specific transforming growth factor-beta binding proteins with membrane attachments sensitive to phosphatidylinositol-specific phospholipase C. J Biol Chem 266: 20767–20772

    PubMed  CAS  Google Scholar 

  283. Munger JS, Harpel JG, Giancotti FG, Rifkin DB (1998) Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbetal. Mol Biol Cell 9: 2627–2638

    PubMed  CAS  Google Scholar 

  284. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kamins-ki N, Garat C, Matthay MA et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96: 319–328

    Article  PubMed  CAS  Google Scholar 

  285. Takeuchi Y, Kodama Y, Matsumoto T (1994) Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 269: 32634–32638

    PubMed  CAS  Google Scholar 

  286. Mooradian DL, Lucas RC, Weatherbee JA, Furcht LT (1989) Transforming growth factor-beta 1 binds to immobilized fibronectin. J Cell Biochem 41: 189–200

    Article  PubMed  CAS  Google Scholar 

  287. Ichijo H, Hellman U, Wernstedt C, Gonez LJ, Claesson-Welsh L, Heldin CH, Miyazono K (1993) Molecular cloning and characterization of ficolin, a multimeric protein with fibrinogen-and collagen-like domains. J Biol Chem 268: 14505–14513

    PubMed  CAS  Google Scholar 

  288. Huang SS, O’Grady P, Huang JS (1988) Human transforming growth factor beta.alpha 2-macroglobulin complex is a latent form of transforming growth factor beta. J Biol Chem 263: 1535–1541

    PubMed  CAS  Google Scholar 

  289. McCaffrey TA, Falcone DJ, Du B (1992) Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J Cell Physiol 152: 430–440

    Article  PubMed  CAS  Google Scholar 

  290. Murphy-Ullrich JE, Schultz-Cherry S, Hook M (1992) Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell 3: 181–188

    PubMed  CAS  Google Scholar 

  291. Philip A, Bostedt L, Stigbrand T, O’Connor-McCourt MD (1994) Binding of transforming growth factor-beta (TGF-beta) to pregnancy zone protein (PZP). Comparison to the TGF-beta-alpha 2-macroglobulin interaction. Eur J Biochem 221: 687–693

    Article  PubMed  CAS  Google Scholar 

  292. Bodmer S, Podlisny MB, Selkoe DJ, Heid I, Fontana A (1990) Transforming growth factor-beta bound to soluble derivatives of the beta amyloid precursor protein of Alzheimer’s disease. Biochem Biophys Res Commun 171: 890–897

    Article  PubMed  CAS  Google Scholar 

  293. MacKay K, Robbins AR, Bruce MD, Danielpour D (1990) Identification of disulfide-linked transforming growth factor-beta 1-specific binding proteins in rat glomeruli. J Biol Chem 265: 9351–9356

    PubMed  CAS  Google Scholar 

  294. Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engström U, Heldin CH (1992) Transforming growth factor-beta 1,-beta 2, and-beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J Biol Chem 267: 19482–19488

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Grainger, D.J., Mosedale, D.E. (2001). TGF-β and the cardiovascular system. In: Breit, S.N., Wahl, S.M. (eds) TGF-β and Related Cytokines in Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8354-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8354-2_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9531-6

  • Online ISBN: 978-3-0348-8354-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics