Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 130 Accesses

Abstract

Over the last two decades, many of the peripheral mechanisms and mediators of the innate inflammatory response have been identified as endogenously-mediated, localized reactions in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain (for previous reviews see [1-5]). The fine details of these processes are considered in subsequent chapters of this volume. Here, we summarize broadly what the mechanisms and mediators are, the evidence for their endogenous production in the AD brain, and the mounting evidence of their significance to AD pathology. We also provide a brief summary of the clinical and pathological features of AD for those readers who are not already familiar with this disorder. Conversely, we have attempted to provide a simplified description of several key inflammatory mechanisms such as the complement cascade for those readers who do not have expertise in immunology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisen PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implica-tions for therapy. Am J Psychiatry151: 1105–1113

    Google Scholar 

  2. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implica-tions for therapy of Alzheimer and other neurodegenerative diseases.Brain Res Rev21: 195–218

    Article  PubMed  CAS  Google Scholar 

  3. Rogers J, Webster S, Lue L-F, Brachova L, Civin WH, Emerling M, Shivers B, Walter D, McGeer PL, (1996) Inflammation and Alzheimer’s disease pathogenesis.Neurobiol Aging17: 681–686

    Article  PubMed  CAS  Google Scholar 

  4. Rogers J, Griffin WST (1998) Inflammatory mechanisms of Alzheimer’s disease. In: PL Wood (ed):Neuroinflammation: mechanisms and management.Humana Press Inc, Totowa, NJ, 177–193

    Google Scholar 

  5. Rogers J, O’Barr S (1996) Inflammatory mediators in Alzheimer’s disease. In: RE Tanzi, W Wasco (eds):Molecular approaches to Alzheimer’s disease.Humana Press, Totawa, N.J., 177–197

    Google Scholar 

  6. Esiri MM, Hyman BT, Beyreuther K, Masters CL (1997) Ageing and dementia. In: DI raham, PL Lantos (eds):Greenfield’s neuropathology.Arnold Press, London, 153–177

    Google Scholar 

  7. Nakawatase TV, Cummings JL (2000) Alzheimer’s disease and related dementias. In: L Goldman, JC Bennet (eds):Cecil textbook of medicine.WB Saunders, Philadelphia, 2043–2045

    Google Scholar 

  8. Price DL (2000) Aging of the brain and dementia of the Alzheimer type. In: ER Kandel, JH Schwartz, TM Jessel (eds):Principles of neural science.McGraw-Hill, New York

    Google Scholar 

  9. Solodkin A, Van Hoesen GW (1997) Neuropathology and functional anatomy of Alzheimer’s disease. In: J Brioni, M Decker (eds):Pharmacological treatment of Alzheimer’s disease: Molecular and neurobiological foundations.Wiley-Liss, New York, 151–177

    Google Scholar 

  10. Katzman R (1994) Apolipoprotein E and Alzheimer’s disease.Curr Opin Neurobiol4: 703–707

    Article  PubMed  CAS  Google Scholar 

  11. Alzheimer A (1907) Über eine eigenartige Erkankung der Hirnrinde.Allgemeine Zeitschrift für Psychiatrie and Gerichtliche Medizin64: 146–148

    Google Scholar 

  12. Warner MD, Peabody CA, Flattery JJ, Tinklenberg JR (1986) Olfactory deficits and Alzheimer’s disease.Biol Psychiatry21: 116–118

    Article  PubMed  CAS  Google Scholar 

  13. Du Y, Dodel RC, Eastwood BJ (2000) Association of an interleukin-1a polymorphism with Alzheimer’s disease.Neurology55: 480–483

    Article  PubMed  CAS  Google Scholar 

  14. Rogers J (2000) An IL-1 alpha susceptibility polymorphism in Alzheimer’s disease:new fuel for the inflammation hypothesis.Neurology55: 464–465

    Article  PubMed  CAS  Google Scholar 

  15. Griffin WS, Nicoll JA, Grimaldi LM, Sheng JG, Mrak RE (2000) The pervasiveness of interleukin-1 in Alzheimer pathogenesis: a role for specific polymorphisms in disease risk.Exp Gerontol35: 481–487

    Article  PubMed  CAS  Google Scholar 

  16. Mrak RE, Griffin WS (2000) Interleukin-1 and the immunogenetics of Alzheimer disease.J Neuropathol Exp Neurol59: 471–476

    PubMed  CAS  Google Scholar 

  17. Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, Esiri MM, Mur-ray LS, Dewar D, Love S et al (2000) Association of interleukin-1 gene polymorphisms with Alzheimer’s disease.Ann Neurol47: 365–368

    Article  PubMed  CAS  Google Scholar 

  18. Grimaldi LM, Casadei VM, Ferri C, Veglia F, Licastro F, Annoni G, Biunno I, De Bellis G, Sorbi S, Mariani C et al (2000) Association of early-onset Alzheimer’s disease with an interleukin-lalpha gene polymorphism.Ann Neurol47: 361–365

    Article  PubMed  CAS  Google Scholar 

  19. Papassotiropoulos A, Bagli M, Jessen F, Bayer TA, Maier W, Rao ML, Heun R (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease.Ann Neurol45: 666–668

    Article  PubMed  CAS  Google Scholar 

  20. Bhojak TJ, DeKosky ST, Ganguli M, Kamboh MI (2000) Genetic polymorphisms in the cathespin D and interleukin-6 genes and the risk of Alzheimer’s disease.Neurosci Lett288: 21–24

    Article  PubMed  CAS  Google Scholar 

  21. Bagli M, Papassotiropoulos A, Knapp M, Jessen F, Luise RM, Maier W, Heun R (2000) Association between an interleukin-6 promoter and 3’ flanking region haplotype and reduced Alzheimer’s disease risk in a German population.Neurosci Lett283: 109–112

    Article  PubMed  CAS  Google Scholar 

  22. Neuroinflammation Working Group, Akiyama H, Barger S, Barnum S, Bauer J, Bradt B, Cole GM, Cooper NR, Eikelenboom P, Emmerling M et al (2000) Inflammation and Alzheimer’s disease.Neurobiol Aging21: 383–421

    Article  PubMed  CAS  Google Scholar 

  23. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment.Ann Neurol30: 572–580

    Article  PubMed  CAS  Google Scholar 

  24. Kuby J (1994) The complement system. In:ImmunologyW.H. Freeman and Company, New York, 393–415

    Google Scholar 

  25. Pangburn MK, Muller-Eberhard HJ (1984) The alternative pathway of complement.Springer Semin Immunopathol7: 163–192

    Article  PubMed  CAS  Google Scholar 

  26. Whaley K, Schwaeble W (1997) Complement and complement deficiencies.Semin Liver Dis17: 297–310

    Article  PubMed  CAS  Google Scholar 

  27. Muller-Eberhard HJ (1988) Molecular organization and function of the complement system.Annu Rev Biochem57: 321–347

    Article  PubMed  CAS  Google Scholar 

  28. Majno G (1975)The healing hand.Harvard University Press

    Google Scholar 

  29. Kuby J (1994) Overview of the immune system. In:ImmunologyW.H. Freeman and Company, New York, 1–21

    Google Scholar 

  30. Gewurz H, Ying SC, Jiang H, Lint TF (1993) Nonimmune activation of the classical complement pathway.Behring Inst Mitt138–147

    Google Scholar 

  31. Jiang H, Burdick D, Glabe CG, Cotman CW, Tenner AJ (1994) β-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q a chain.J. Immunol152: 5050–5059

    PubMed  CAS  Google Scholar 

  32. Webster S, Glabe C, Rogers J (1995) Multivalent binding of complement protein C1Q to the amyloid beta-peptide (A beta) promotes the nucleation phase of A beta aggregation.Biochem Biophys Res Commun217: 869–875

    Article  PubMed  CAS  Google Scholar 

  33. Lorton D, Schaller J, Lala A, De Nardin E (2000) Chemotactic-like receptors and Abeta peptide induced responses in Alzheimer’s Disease.Neurobiol Aging21: 463–473

    Article  PubMed  CAS  Google Scholar 

  34. El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scav-enger receptor-mediated adhesion of microglia to beta-amyloid fibrils.Nature382: 716–719

    Article  PubMed  CAS  Google Scholar 

  35. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease.Nature382: 685–691

    Article  PubMed  CAS  Google Scholar 

  36. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature400: 173–177

    Article  PubMed  CAS  Google Scholar 

  37. Kandal ER, Schwartz JH, Jessel TM (2000) Principles of neural science.McGraw-Hill, New York

    Google Scholar 

  38. Andriezen WL (1893) On a system of fibre-like cells surrounding the blood vessels of the brain of man and mammals and its physiological significance.Int Monatsschr Anat Physiol10: 532–540

    Google Scholar 

  39. Montgomery DL (1994) Astrocytes: form, functions, and roles in disease.Vet Pathol31: 145–167

    Article  PubMed  CAS  Google Scholar 

  40. Malhotra SK, Shnitka TK, Elbrink J (1990) Reactive astrocytes — a review.Cytobios61: 133–160

    PubMed  CAS  Google Scholar 

  41. Schechter R, Yen SH, Terry RD (1981) Fibrous Astrocytes in senile dementia of the Alzheimer type.J Neuropathol Exp Neurol40: 95–101

    Article  PubMed  CAS  Google Scholar 

  42. Wisniewski HM, Wegiel J, Wang KC, Kujawa M, Lach B (1989) Ultrastructural studies of the cells forming amyloid fibers in classical plaques.Can J Neurol Sci16: 535–542

    PubMed  CAS  Google Scholar 

  43. Mandybur TI, Ormsby I, Zemlan FP (1989) Cerebral aging: a quantitative study of gliosis in old nude mice.Acta Neuropathol (Berlin)77: 507–513

    Article  CAS  Google Scholar 

  44. Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques.Am J Pathol132: 86–101

    PubMed  CAS  Google Scholar 

  45. Mandybur TI (1989) Cerebral amyloid angiopathy and astrocytic gliosis in Alzheimer’s disease.Acta Neuropathol (Berlin)78: 329–331

    Article  CAS  Google Scholar 

  46. Wisniewski HM, Sinatra RS, Iqbal K, Grunde-Iqbal I (1981) Neurofibrillary and synaptic pathology in the aged brain. In: AE Johnson (ed):Aging and cell structure.Plenum Publishing, New York, 105–142

    Chapter  Google Scholar 

  47. Mrak RE, Sheng JG, Griffin WS (1996) Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease.J Neuropathol Exp Neurol55: 273–279

    Article  PubMed  CAS  Google Scholar 

  48. DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease.Exp Neurol149: 329–340

    Article  PubMed  CAS  Google Scholar 

  49. Shaffer LM, Dority MD, Gupta-Bansal R, Frederickson RC, Younkin SG, Brunden KR (1995) Amyloid beta protein (A13) removal by neuroglial cells in culture.Neurobiol Aging16: 737–745

    Article  PubMed  CAS  Google Scholar 

  50. Johnson AB, Blum NR (1970) Nucleoside phosphatase activities associated with the tangles and plaques of alzheimer’s disease: a histochemical study of natural and experimental neurofibrillary tangles.J Neuropathol Exp Neurol29: 463–478

    Article  PubMed  CAS  Google Scholar 

  51. Braak E, Braak H, Mandelkow EM (1994)A sequence of cytoskeleton changes relatedto the formation of neurofibrillary tangles and neuropil threads.Acta Neuropathol (Berlin)87: 554–567

    Article  CAS  Google Scholar 

  52. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Igbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease.Brain Res477: 90–99

    Article  PubMed  CAS  Google Scholar 

  53. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes — implications for their role in neurologic disease.Neuroscience54: 15–36

    Article  PubMed  CAS  Google Scholar 

  54. Wegiel J, Wisniewski HM (1998) Astrocyte pathology in Alzheimer’s Disease. In: HM Schipper (ed):Astrocytes in brain aging and neurodegeneration.R.G. Landes Company, Austin, TX, 91–109

    Google Scholar 

  55. Probst A, Ulrich J, Heitz PU (1982)Senile dementia of Alzheimer type: astroglial reaction to extracellular neurofibrillary tangles in the hippocampus. An immunocytochemical and electron-microscopic study.Acta Neuropathol (Berlin)57: 75–79

    Article  CAS  Google Scholar 

  56. Yamaguchi H, Morimatsu M, Hirai S, Takahashi K (1987) Alzheimer’s neurofibrillary tangles are penetrated by astroglial processes and appear eosinophilic in their final stages.Acta Neuropathol (Berlin)72: 214–217

    Article  CAS  Google Scholar 

  57. Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain.Neuroscience15: 313–326

    Article  PubMed  CAS  Google Scholar 

  58. Perry VH, Bell MD, Anthony DC (1999) Unique aspects of inflammation in the central nervous system. In: RR Ruffolo, GZ Feuerstain, AJ Hunter, G Poste, BW Metcalf (eds):Inflammatory cells and mediators in CNS diseases.Harwood Academic Publishers, Canada, 21–38

    Google Scholar 

  59. Barron KD (1995) The microglial cell. A historical review.J Neurol Sci 134 (Suppl)57–68

    Article  PubMed  Google Scholar 

  60. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS.Trends Neurosci19: 312–318

    Article  PubMed  CAS  Google Scholar 

  61. Giulian D (1987) Ameboid microglia as effectors of inflammation in the central nervous system.J Neurosci Res18: 155–3

    Article  PubMed  CAS  Google Scholar 

  62. McGeer PL, McGeer EG (1995) Central nervous system immune reactions in Alzheimer’s disease. In: NJ Rothwell (ed):Immune responses in the nervous system.Bios Scientific Publishers, Manchester, UK, 143–157

    Google Scholar 

  63. Chao CC, Hu S, Sheng WS, Kravitz FH, Peterson PK (1999) Inflammation-mediated neuronal cell injury. RR Ruffolo, GZ Feuerstain, AJ Hunter, G Poste, BW Metcalf (eds):Inflammatory cells and mediators in CNS diseases.Harwood Academic Publishers, Canada, 483–495

    Google Scholar 

  64. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis.Prog Neurobiol57: 563–581

    Article  PubMed  CAS  Google Scholar 

  65. Walker DG (1998) Inflammatory markers in chronic neurodegenerative disorders with emphasis on Alzheiemer’s disease. In: PL Wood (ed):Neuroinflammation: mechanisms and management.Humana Press Inc, Totowa, NJ, 61–90

    Google Scholar 

  66. Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines.Eur J Immunol22: 2429–2436

    Article  PubMed  CAS  Google Scholar 

  67. Espey MG, Chernyshev ON, Reinhard JFJ, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid.Neuroreport8: 431–434

    Article  PubMed  CAS  Google Scholar 

  68. Leist M, Nicotera P (1999) Calcium and cell death. In: VE Koliatsos, RR Ratan (eds):Cell death and diseases of the nervous system.Humana Press, Totowa, NJ, 69–90

    Chapter  Google Scholar 

  69. McDonald DR, Bamberger ME, Combs CK, Landreth GE (1998) beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes.J Neurosci18: 4451–4460

    PubMed  CAS  Google Scholar 

  70. McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia.J Neurosci17: 2284–2294

    PubMed  CAS  Google Scholar 

  71. Wood JG, Zinsmeister P (1991) Tyrosine phosphorylation systems in Alzheimer’s disease pathology.Neurosci Lett121: 12–16

    Article  PubMed  CAS  Google Scholar 

  72. Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins.J Neurosci19: 928–939

    PubMed  CAS  Google Scholar 

  73. Fischer B, Schmoll H, Riederer P, Bauer J, Platt D, Popa-Wagner A (1995) Complement C1q and C3 mRNA expression in the frontal cortex of Alzheimer’s patients.J Mol Med73465–471

    Article  PubMed  CAS  Google Scholar 

  74. Pasinetti GM, Johnson SA, Rozovsky I, Lampert-Etchells M, Morgan DG, Gordon MN, Morgan TE, Willoughby D, Finch CE (1992) Complement C1gB and C4 mRNAs responses to lesioning in rat brain.Exp Neurol118: 117–125

    Article  PubMed  CAS  Google Scholar 

  75. Shen Y, Li R, McGeer EG, McGeer PL (1997) Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res.769: 391–395

    Article  PubMed  CAS  Google Scholar 

  76. Terai K, Walker DG, McGeer EG, McGeer PL (1997) Neurons express proteins of the classical complement pathway in Alzheimer disease.Brain Res769: 385–390

    Article  PubMed  CAS  Google Scholar 

  77. Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease.J Neurosci Res57: 295–303

    Article  PubMed  CAS  Google Scholar 

  78. Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Steiler RA, Isakson PC, Chen J, Graham SH (1998) Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia.Proc Natl Acad Sci USA95: 10954–10959

    Article  PubMed  CAS  Google Scholar 

  79. Nogawa S, Zhang F, Ross ME, ladecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage.J Neurosci17: 2746–2755

    PubMed  CAS  Google Scholar 

  80. Oka A, Takashima S (1997) Induction of cyclo-oxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons.Neuroreport8: 1161–1164

    Article  PubMed  CAS  Google Scholar 

  81. Tocco G, Freire-Moar J, Schreiber SS, Sakhi SH, Aisen PS, Pasinetti GM (1997) Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease.Exp Neurol144: 339–349

    Article  PubMed  CAS  Google Scholar 

  82. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids.Neuron 11371–386

    Article  PubMed  CAS  Google Scholar 

  83. Botchkina GI, Meistrell ME, Botchkina IL, Tracey KJ (1997) Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia.Mol Med3: 765–781

    PubMed  CAS  Google Scholar 

  84. Breder CD, Tsujimoto M, Terano Y, Scott DW, Saper CB (1993) Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system.J Comp Neurol337: 543–567

    Article  PubMed  CAS  Google Scholar 

  85. Gong C, Qin Z, Betz AL, Liu XH, Yang GY (1998) Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice.Brain Res801: 1–8

    Article  PubMed  CAS  Google Scholar 

  86. Murphy PG, Borthwick LS, Johnston RS, Kuchel G, Richardson PM (1999) Nature of the retrograde signal from injured nerves that induces interleukin-6 mRNA in neurons.J Neurosci19: 3791–3800

    PubMed  CAS  Google Scholar 

  87. Orzylowska O, Oderfeld-Nowak B, Zaremba M, Januszewski S, Mossakowski M (1999) Prolonged and concomitant induction of astroglial immunoreactivity of interleukin-1beta and interleukin-6 in the rat hippocampus after transient global ischemia.Neurosci Lett263: 72–76

    Article  PubMed  CAS  Google Scholar 

  88. Suzuki S, Tanaka K, Nagata E, Ito D, Dembo T, Fukuuchi Y (1999) Cerebral neurons express interleukin-6 after transient forebrain ischemia in gerbils.Neurosci Lett262: 117–120

    Article  PubMed  CAS  Google Scholar 

  89. Tchelingerian JL, Vignais L, Jacque C (1994) TNF alpha gene expression is induced in neurones after a hippocampal lesion.Neuroreport5: 585–588

    Article  PubMed  CAS  Google Scholar 

  90. Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide.Nat Med1:693–699

    Article  PubMed  CAS  Google Scholar 

  91. Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130.Cell69: 1121–1132

    Article  PubMed  CAS  Google Scholar 

  92. Yan SD, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, God-man GC, Stern D et al (1997) Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease.Proc Natl Acad Sci USA94: 5296–5301

    Article  PubMed  CAS  Google Scholar 

  93. Prodinger WM, Wurzner R, Erdei A, Dierich M (1999) Complement. In: WE Paul (ed):Fundamental immunology.Lippincott/Raven, hiladelphia, 967–995

    Google Scholar 

  94. Morgan BP, Gasque P (1997) Extrahepatic complement biosynthesis: where, when and why?Clin Exp Immunol107: 1–7

    Article  PubMed  CAS  Google Scholar 

  95. Johnson SA, Lampert-Etchells M, Pasinetti GM, Rozovsky I, Finch CE (1992) Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental brain lesioning.Neurobiol Aging13: 641–648

    Article  PubMed  CAS  Google Scholar 

  96. Strohmeyer R, Shen Y, Rogers J (2000) Detection of complement alternative pathway mRNA and proteins in Alzheimer’s disease brain.Mol Brain Res81: 7–18

    Article  PubMed  CAS  Google Scholar 

  97. Walker DG, McGeer PL (1992) Complement gene expression in human brain: comparison between normal and Alzheimer disease cases.Mol Brain Res14: 109–116

    Article  PubMed  CAS  Google Scholar 

  98. Yasojima K, Schwab C, McGeer EG, McGeer PL (1999) Up-regulated production and activation of the complement system in Alzheimer’s disease brain. AmJ Pathol154: 927–936

    Article  PubMed  CAS  Google Scholar 

  99. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease.Neurobiol Aging9: 339–349

    Article  PubMed  CAS  Google Scholar 

  100. Linder E, Lehto VP, Stenman S (1979) Activation of complement by cytoskeletal intermediate filaments.Nature278: 176–178

    Article  PubMed  CAS  Google Scholar 

  101. Finch CE (1999) Clusterin in normal brain functions and during neurodegeneration.RG LandesAustin, TX

    Google Scholar 

  102. Johns TG, Bernard CC (1997) Binding of complement component C1q to myelin oligodendrocyte glycoprotein: a novel mechanism for regulating CNS inflammation.Mol Immunol34: 33–38

    Article  PubMed  CAS  Google Scholar 

  103. Abbas A, Lichtman A, Pober JS (2000)Cellular and molecular immunology.WB Saunders, Philadelphia

    Google Scholar 

  104. Xia MQ, Hyman BT (1999) Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease.J Neurovirol5: 32–41

    Article  PubMed  CAS  Google Scholar 

  105. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H, Whitton JL, Bloom FE, Campbell IL (1998) Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration.J Immunol161: 5016–5026

    PubMed  CAS  Google Scholar 

  106. Stalder AK, Carson MJ, Pagenstecher A, Asensio VC, Kincaid C, Benedict M, Powell HC, Masliah E, Campbell IL (1998) Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor. AmJ Pathol153: 767–783

    Article  PubMed  CAS  Google Scholar 

  107. Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH (1997) Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice overexpressing interleukin 6 in the brain.Proc Natl Acad Sci94: 1500–1505

    Article  PubMed  CAS  Google Scholar 

  108. Brett FM, Mizisin AP, Powell HC, Campbell IL (1995) Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes.J Neuropathol Exp Neurol54: 766–775

    Article  PubMed  CAS  Google Scholar 

  109. O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology.Crit Rev Neurobiol13: 45–82

    PubMed  Google Scholar 

  110. Kitamura Y, Shimohama S, Koike H, Kakimura J, Matsuoka Y, Nomura Y, GebickeHaerter PJ, Taniguchi T (1999) Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains.Biochem Biophys Res Commun254: 582–586

    Article  PubMed  CAS  Google Scholar 

  111. Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain.Neuroscience87: 319–324

    Article  PubMed  CAS  Google Scholar 

  112. Bauer MK, Lieb K, Schulze-Osthoff K, Berger M, Gebicke-Haerter PJ, Bauer J, Fiebich BL (1997) Expression and regulation of cyclooxygenase-2 in rat microglia.Eur J Biochem243: 726–731

    Article  PubMed  CAS  Google Scholar 

  113. Minghetti L, Polazzi E, Nicolini A, Creminon C, Levi G (1996) Interferon-gamma and nitric oxide down-regulate lipopolysaccharide-induced prostanoid production in cultured rat microglial cells by inhibiting cyclooxygenase-2 expression.J Neurochem66: 1963–1970

    Article  PubMed  CAS  Google Scholar 

  114. O’Banion MK, Miller JC, Chang JW, Kaplan MD, Coleman PD (1996) Interleukin-1 beta induces prostaglandin G/H synthase-2 (cyclooxygenase- 2) in primary murine astrocyte cultures.J Neurochem66: 2532–2540

    Article  PubMed  Google Scholar 

  115. Blom MA, van Twillert MG, de Vries SC, Engels F, Finch CE, Veerhuis R, Eikelenboom P (1997) NSAIDS inhibit the IL-1 beta-induced IL-6 release from human post-mortem astrocytes: the involvement of prostaglandin E2.Brain Res.777: 210–218

    Article  PubMed  CAS  Google Scholar 

  116. Fiebich BL, Hull M, Lieb K, Gyufko K, Berger M, Bauer J (1997) Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells.J Neurochem68: 704–709

    Article  PubMed  CAS  Google Scholar 

  117. Janabi N, Hau I, Tardieu M (1999) Negative feedback between prostaglandin and alpha-and beta-chemokine synthesis in human microglial cells and astrocytes.J Immunol162: 1701–1706

    PubMed  CAS  Google Scholar 

  118. Lee RK, Knapp S, Wurtman RJ (1999) Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants.J Neurosci19: 940–947

    PubMed  CAS  Google Scholar 

  119. Kelley KA, Ho L, Winger D, Freire-Moar J, Borelli CB, Aisen PS, Pasinetti GM (1999) Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2.Am J Pathol155: 995–1004

    Article  PubMed  CAS  Google Scholar 

  120. Pasinetti GM (1998) Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions.J Neurosci Res.54: 1–6

    Article  PubMed  CAS  Google Scholar 

  121. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.Nature391: 82–86

    Article  PubMed  CAS  Google Scholar 

  122. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs.J Biol Chem272: 3406–3410

    Article  PubMed  CAS  Google Scholar 

  123. Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology.Annu Rev Cell Dey Biol12: 335–363

    Article  CAS  Google Scholar 

  124. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferatoractivated receptor-gamma is a negative regulator of macrophage activation.Nature391: 79–82

    Article  PubMed  CAS  Google Scholar 

  125. Schmaier AH, Dahl LD, Rozemuller AJ, Roos RA, Wagner SL, Chung R, Van Nostrand WE (1993) Protease nexin-2/amyloid beta protein precursor. A tight-binding inhibitor of coagulation factor IXa.J Clin Invest92: 2540–2545

    Article  PubMed  CAS  Google Scholar 

  126. Smith RP, Higuchi DA, Broze GJJ (1990) Platelet coagulation factor XIa-inhibitor, a form of Alzheimer amyloid precursor protein.Science248: 1126–1128

    Article  PubMed  CAS  Google Scholar 

  127. Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. AmJ Pathol133: 456–463

    PubMed  CAS  Google Scholar 

  128. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function.Annu Rev Biochem67: 609–652

    Article  PubMed  CAS  Google Scholar 

  129. Munoz-Fernandez MA, Fresno M (1998) The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system.Prog Neurobiol56: 307–340

    Article  PubMed  CAS  Google Scholar 

  130. Cotman CW, Hailer NP, Pfister KK, Soltesz I, Schachner M (1998) Cell adhesion molecules in neural plasticity and pathology: similar mechanisms, distinct organizations?Prog Neurobiol 55659–669

    Article  PubMed  CAS  Google Scholar 

  131. Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury.Neurosci Biobehav Rev20: 445–452

    Article  PubMed  CAS  Google Scholar 

  132. Benveniste EN, Huneycutt BS, Shrikant P, Ballestas ME (1995) Second messenger systems in the regulation of cytokines and adhesion molecules in the central nervous system.Brain Behav Immun9: 304–314

    Article  PubMed  CAS  Google Scholar 

  133. Akiyama H, Kawamata T, Yamada T, Tooyama I, Ishii T, McGeer PL (1993) Expression of intercellular adhesion molecule (ICAM)-1 by a subset of astrocytes in Alzheimer disease and some other degenerative neurological disorders.Acta Neuropathol (Berlin)85: 628–634

    Article  CAS  Google Scholar 

  134. Rozemuller JM, Eikelenboom P, Pals ST, Stam FC (1989) Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family.Neurosci Lett101: 288–292

    Article  PubMed  CAS  Google Scholar 

  135. Eriksson S, Janciauskiene S, Lannfelt L (1995) Alpha 1-antichymotrypsin regulates Alzheimer beta-amyloid peptide fibril formation.Proc Natl Acad Sci USA92: 2313–2317

    Article  PubMed  CAS  Google Scholar 

  136. Fraser PE, Nguyen JT, McLachlan DR, Abraham CR, Kirschner DA (1993) Alpha 1antichymotrypsin binding to Alzheimer A beta peptides is sequence specific and induces fibril disaggregationin vitro. J Neurochem61: 298–305

    Article  CAS  Google Scholar 

  137. Ma J, Yee A, Brewer HBJ, Das S, Potter H (1994) Amyloid-associated proteins alpha 1antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments.Nature372: 92–94

    Article  PubMed  CAS  Google Scholar 

  138. Kamboh MI, Sanghera DK, Ferrell RE, DeKosky ST (1995) APOE*4-associated Alzheimer’s disease risk is modified by alpha 1-antichymotrypsin polymorphism.Nat Genet10: 486–488

    Article  PubMed  CAS  Google Scholar 

  139. Borth W (1992) a2-macroglobulin, a multifunctional binding protein with targeting characteristics.FASEB J6: 3345–3353

    PubMed  CAS  Google Scholar 

  140. Sottrup-Jensen L (1989) Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation.J Biol Chem264: 11539–11542

    PubMed  CAS  Google Scholar 

  141. Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE, Hyman BT, Strickland DK (1995) LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation.Cell82: 331–340

    Article  PubMed  CAS  Google Scholar 

  142. Williams SE, Kounnas MZ, Argraves KM, Argraves WS, Strickland DK (1994) The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and the receptor-associated protein. An overview.Ann NY Acad Sci737: 1–13

    Article  PubMed  CAS  Google Scholar 

  143. Du Y, Ni B, Glinn M, Dodel RC, Bales KR, Zhang Z, Hyslop PA, Paul SM (1997) alpha2-Macroglobulin as a beta-amyloid peptide-binding plasma protein.J Neurochem69: 299–305

    Article  PubMed  CAS  Google Scholar 

  144. Hughes SR, Khorkova O, Goyal S, Knaeblein J, Heroux J, Riedel NG, Sahasrabudhe S (1998) Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation.Proc Natl Acad Sci USA95: 3275–3280

    Article  PubMed  CAS  Google Scholar 

  145. Du Y, Bales KR, Dodel RC, Liu X, Glinn MA, Horn JW, Little SP, Paul SM (1998) Alpha2-macroglobulin attenuates beta-amyloid peptide 1–40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons.J Neurochem70: 1182–1188

    Article  PubMed  CAS  Google Scholar 

  146. Bauer J, Strauss S, Schreiter-Gasser U, Ganter U, Schlegel P, Witt I, Yolk B, Berger M (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices.FEBS Lett285: 111–114

    Article  PubMed  CAS  Google Scholar 

  147. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron11:575–580

    Article  PubMed  CAS  Google Scholar 

  148. Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B (1992) Detection of interleukin6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients.Lab Invest66: 223–230

    PubMed  CAS  Google Scholar 

  149. Tooyama I, Kawamata T, Akiyama H, Moestrup SK, Gliemann J, McGeer PL (1993) Immunohistochemical study of alpha 2 macroglobulin receptor in Alzheimer and control postmortem human brain.Mol Chem Neuropathol18: 153–160

    Article  PubMed  CAS  Google Scholar 

  150. Wolf BB, Lopes MB, VandenBerg SR, Gonias SL (1992) Characterization and immunohistochemical localization of alpha 2- macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain.Am J Pathol141: 37–42

    PubMed  CAS  Google Scholar 

  151. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, Perry R, Watson BJ, Bassett SS, McInnis MG et al (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease.Nat Genet19: 357–360

    Article  PubMed  CAS  Google Scholar 

  152. Poller W, Faber JP, Klobeck G, Olek K (1992) Cloning of the human alpha 2-macroglobulin gene and detection of mutations in two functional domains: the bait region and the thiolester site.Hum Genet88: 313–319

    Article  PubMed  CAS  Google Scholar 

  153. Kang DE, Saitoh T, Chen X, Xia Y, Masliah E, Hansen LA, Thomas RG, Thal LJ, Katzman R (1997) Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer’s disease.Neurology49: 56–61

    Article  PubMed  CAS  Google Scholar 

  154. Liao A, Nitsch RM, Greenberg SM, Finckh U, Blacker D, Albert M, Rebeck GW, Gomez-Isla T, Clatworthy A, Binetti G et al (1998) Genetic association of an alpha2macroglobulin (Va1100011e) polymorphism and Alzheimer’s disease.Hum Mol Genet7: 1953–1956

    Article  PubMed  CAS  Google Scholar 

  155. Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease.Proc Natl Acad Sci USA90: 8098–8102

    Article  PubMed  CAS  Google Scholar 

  156. Kisilevsky R (1992) Proteoglycans, glycosaminoglycans, amyloid-enhancing factor, and amyloid deposition.J Intern Med232: 515–516

    Article  PubMed  CAS  Google Scholar 

  157. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. AmJ Pathol155: 853–862

    Article  PubMed  CAS  Google Scholar 

  158. Laskowitz DT, Goel S, Bennett ER, Matthew WD (1997) Apolipoprotein E suppresses glial cell secretion of TNF alpha.J Neuroimmunol76: 70–74

    Article  PubMed  CAS  Google Scholar 

  159. Laskowitz DT, Matthew WD, Bennett ER, Schmechel D, Herbstreith MH, Goel S, McMillian MK (1998) Endogenous apolipoprotein E suppresses LPS-stimulated micro-glial nitric oxide production.Neuroreport9: 615–618

    Article  PubMed  CAS  Google Scholar 

  160. Behl C (1999) Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches.Prog Neurobiol57: 301–323

    Article  PubMed  CAS  Google Scholar 

  161. Liu H, Bowes RC, van de Water B, Sillence C, Nagelkerke JF, Stevens JL (1997) Endo-plasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+disturbances, and cell death in renal epithelial cells.J Biol Chem272: 21751–21759

    Article  PubMed  CAS  Google Scholar 

  162. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease.Free Radic Biol Med23: 134–147

    Article  PubMed  CAS  Google Scholar 

  163. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease.Brain Pathol9: 133–146

    Article  PubMed  CAS  Google Scholar 

  164. Takeda A, Yasuda T, Miyata T, Goto Y, Wakai M, Watanabe M, Yasuda Y, Horie K, Inagaki T, Doyu M et al (1998) Advanced glycation end products co-localized with astrocytes and microglial cells in Alzheimer’s disease brain.Acta Neuropathol (Berlin)95: 555–558

    Article  CAS  Google Scholar 

  165. Ando Y, Brannstrom T, Uchida K, Nyhlin N, Nasman B, Suhr O, Yamashita T, Olsson T, El Salhy M, Uchino M et al (1998) Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid.J Neurol Sci156: 172–176

    Article  PubMed  CAS  Google Scholar 

  166. Good PF, Werner P, Hsu A, Olanow CW, Perl DP (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. AmJ Pathol149: 21–28

    PubMed  CAS  Google Scholar 

  167. Smith MA, Richey HP, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease.J Neurosci17: 2653–2657

    PubMed  CAS  Google Scholar 

  168. Su JH, Deng G, Cotman CW (1997) Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer’s disease brain.Brain Res774: 193–199

    Article  PubMed  CAS  Google Scholar 

  169. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochem-ical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation.J Neurosci18: 8126–8132

    PubMed  CAS  Google Scholar 

  170. Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease.Proc Natl Acad Sci USA94: 2642–2647

    Article  PubMed  CAS  Google Scholar 

  171. Della-Bianca V, Dusi S, Bianchini E, Dal-Pra I, Rossi F (1999) β amyloid activates the 02forming NADPH oxidase in microglia, monocytes and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease.J Biol Chem274: 15493–15499

    Article  CAS  Google Scholar 

  172. Klegeris A, McGeer PL (1997) β-amyloid protein enhances macrophage production of oxygen free radicals and glutamate.J Neurosci Res49: 229–235

    Article  PubMed  CAS  Google Scholar 

  173. Klegeris A, Walker DG, McGeer PL (1994) Activation of macrophages by Alzheimer beta amyloid peptide.Biochem Biophys Res Commun199: 984–991

    Article  PubMed  CAS  Google Scholar 

  174. Van Muiswinkel FL, Raupp SF, de Vos NM, Smits HA, Verhoef J, Eikelenboom P, Nottet HS (1999) The amino-terminus of the amyloid-beta protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages.J Neuroimmunol96: 121–130

    Article  PubMed  Google Scholar 

  175. Van Muiswinkel FL, Veerhuis R, Eikelenboom P (1996) Amyloid beta protein primes cultured rat microglial cells for an enhanced phorbol 12-myristate 13-acetate-induced respiratory burst activity.J Neurochem66: 2468–2476

    Article  PubMed  Google Scholar 

  176. Reynolds WF, Rhees J, Maciejewski D, Paladino T, Sieburg H, Maki RA, Masliah E (1999) Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease.Exp Neurol155: 31–41

    Article  PubMed  CAS  Google Scholar 

  177. Veerhuis R, Janssen I, Hack CE, Eikelenboom P (1996) Early complement components in Alzheimer’s disease brains.Acta Neuropathol (Berlin)91: 53–60

    Article  CAS  Google Scholar 

  178. Brachova L, Lue LF, Schultz J, el Rashidy T, Rogers J (1993) Association cortex, cerebellum, and serum concentrations of C1q and factor B in Alzheimer’s disease.Brain Res Mol Brain Res18: 329–334

    Article  PubMed  CAS  Google Scholar 

  179. Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ (1996) Localization and cell association of CJq in Alzheimer’s disease brain. ExpNeurol138: 22–32

    CAS  Google Scholar 

  180. Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, Civin WH, Bracho-va L, Bradt B, Ward P et al (1992) Complement activation by beta-amyloid in Alzheimer disease.Proc Natl Acad Sci USA89: 10016–10020

    Article  PubMed  CAS  Google Scholar 

  181. McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients.Neurosci Lett107: 341–346

    Article  PubMed  CAS  Google Scholar 

  182. McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Immune system response in Alzheimer’s disease.Can J Neurol Sci16: 516–527

    PubMed  CAS  Google Scholar 

  183. Eikelenboom P, Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study.Acta Neuropathol (Berlin)57: 239–242

    Article  CAS  Google Scholar 

  184. Eikelenboom P, Stam FC (1984) An immunohistochemical study on cerebral vascular and senile plaque amyloid in Alzheimer’s dementia.Virchows Arch B Cell Pathol47: 17–25

    Article  CAS  Google Scholar 

  185. Ishii T, Haga S (1984) Immuno-electron-microscopic localization of complements in amyloid fibrils of senile plaques.Acta Neuropathol63: 296–300

    Article  PubMed  CAS  Google Scholar 

  186. Eikelenboom P, Hack CE, Rozemuller JM, Stam FC (1989) Complement activation in amyloid plaques in Alzheimer’s dementia.Virchows Arch B Cell Pathol Incl Mol Pathol56: 259–262

    Article  PubMed  CAS  Google Scholar 

  187. Rogers J, Lue LF, Yang LB, Roher A, Kuo YM, Brachova L, Strohmeyer R, Goux WJ, Lee VM, Johnson GVW et al (2000) Complement activation by neurofibrillary tangles in Alzheimer’s disease.Proc Natl Acad Sci USA

    Google Scholar 

  188. Fischer B, Popa-Wagner A (1996) [Alzheimer disease: involvement of the complement system in cell death. Gene expression of C1q and C3 in the frontal cortex of patients with Alzheimer disease and control probands] Morbus Alzheimer: Beteiligung des Kornplementsystems am Zelluntergang. Genexpression von Komplement C1q and C3 im frontalen Kortex von Alzheimer-Patienten and Kontrollpersonen.Fortschr Med114: 161–163

    PubMed  CAS  Google Scholar 

  189. Eikelenboom P, Zhan SS, Kamphorst W, van d, V, Rozemuller JM (1994) Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer’s disease.Virchows Arch424: 421–427

    Article  PubMed  CAS  Google Scholar 

  190. Eikelenboom P, Rozemuller JM, Kraal G, Stam FC, McBride PA, Bruce ME, Fraser H (1991) Cerebral amyloid plaques in Alzheimer’s disease but not in scrapie-affected mice are closely associated with a local inflammatory process.Virchows Arch B Cell Pathol Incl Mol Pathol60: 329–336

    Article  PubMed  CAS  Google Scholar 

  191. Ishii T, Haga S, Kametani F (1988) Presence of immunoglobulins and complements in the amyloid plaques in the brain of patients with Alzheimer’s disease. In: A PouplardBathelaix, J Emile, Y Christen (eds):Immunology and Alzheimer’s disease.Springer-Verlag, Berlin, 17–29

    Chapter  Google Scholar 

  192. Veerhuis R, van der Valk P, Janssen I, Zhan SS, Van Nostrand WE, Eikelenboom P (1995) Complement activation in amyloid plaques in Alzheimer’s disease brains does not proceed further than C3.Virchows Arch426: 603–610

    Article  PubMed  CAS  Google Scholar 

  193. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains.Neurology38: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  194. Broe GA, Henderson AS, Creasey H, McCusker E, Korten AE, Jorm AF, Longley W, Anthony JC (1990) A case-control study of Alzheimer’s disease in Australia.Neurology40: 1698–1707

    Article  PubMed  CAS  Google Scholar 

  195. Castano A, Lawson LJ, Fearn S, Perry VH (1996) Activation and proliferation of murine microglia are insensitive to glucocorticoids in Wallerian degeneration.Eur J Neurosci8: 581–588

    Article  PubMed  CAS  Google Scholar 

  196. Yamada T, Akiyama H, McGeer PL (1990) Complement-activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d.Neurosci Lett112: 161–166

    Article  PubMed  CAS  Google Scholar 

  197. Gollin PA, Kalaria RN, Eikelenboom P, Rozemuller A, Perry G (1992) Alpha 1-antitrypsin and alpha 1-antichymotrypsin are in the lesions of Alzheimer’s disease.Neuroreport3: 201–203

    Article  PubMed  CAS  Google Scholar 

  198. Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease.Glia7: 75–83

    Article  PubMed  CAS  Google Scholar 

  199. Schwab C, Steele JC, McGeer EG, McGeer PL (1997) Amyloid P immunoreactivity precedes C4d deposition on extracellular neurofibrillary tangles.Acta Neuropathol (Berlin)93: 87–92

    Article  CAS  Google Scholar 

  200. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease.J Neuroimmunol24: 173–182

    Article  PubMed  CAS  Google Scholar 

  201. Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, Walker DG, Bradt B, Cooper NR, Rogers J (1997) Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease.Neurobiol Aging18: 415–421

    Article  PubMed  CAS  Google Scholar 

  202. McGeer PL, Kawamata T, Walker DG (1992) Distribution of clusterin in Alzheimer brain tissue.Brain Res579: 337–341

    Article  PubMed  CAS  Google Scholar 

  203. Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL (1996) Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia.Brain Res Mol Brain Res40: 1–14

    PubMed  CAS  Google Scholar 

  204. Giometto B, Argentiero V, Sanson F, Ongaro G, Tavolato B (1988) Acute-phase proteins in Alzheimer’s disease.Eur Neurol28: 30–33

    Article  PubMed  CAS  Google Scholar 

  205. Honda S, Itoh F, Yoshimoto M, Ohno S, Hinoda Y, Imai K (2000) Association between complement regulatory protein factor H and AM34 antigen, detected in senile plaques.J Gerontol A Biol Sci Med Sci55: M265—M269

    Article  PubMed  CAS  Google Scholar 

  206. McGeer PL, Walker DG, Akiyama H, Kawamata T, Guan AL, Parker CJ, Okada N, McGeer EG (1991) Detection of the membrane inhibitor of reactive lysis (CD59) in diseased neurons of Alzheimer brain.Brain Res544: 315–319

    Article  PubMed  CAS  Google Scholar 

  207. Yasojima K, McGeer EG, McGeer PL (1999) Complement regulators Cl inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease.Brain Res833: 297–301

    Article  PubMed  CAS  Google Scholar 

  208. Yang LB, Li R, Meri S, Rogers J, Shen Y (2000) Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease.J Neurosci20: 7505–7509

    PubMed  CAS  Google Scholar 

  209. Choi-Miura NH, Ihara Y, Fukuchi K, Takeda M, Nakano Y, Tobe T, Tomita M (1992) SP-40,40 is a constituent of Alzheimer’s amyloid.Acta Neuropathol (Berlin)83: 260–264

    Article  CAS  Google Scholar 

  210. Giannakopoulos P, Kovari E, French LE, Viard I, Hof PR, Bouras C (1998) Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study.Acta Neuropathol (Berlin)95: 387–394

    Article  CAS  Google Scholar 

  211. Harr SD, Uint L, Hollister R, Hyman BT, Mendez AJ (1996) Brain expression of apolipoproteins E, J, and A-I in Alzheimer’s disease.J Neurochem66: 2429–2435

    Article  PubMed  CAS  Google Scholar 

  212. Kida E, Choi-Miura NH, Wisniewski KE (1995) Deposition of apolipoproteins E and J in senile plaques is topographically determined in both Alzheimer’s disease and Down’s syndrome brain.Brain Res685: 211–216

    Article  PubMed  CAS  Google Scholar 

  213. Lidstrom AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K (1998) Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease.Exp Neurol154: 511–521

    Article  PubMed  CAS  Google Scholar 

  214. Verbeek MM, Otte-Holler I, Veerhuis R, Ruiter DJ, de Waal RM (1998) Distribution of A beta-associated proteins in cerebrovascular amyloid of Alzheimer’s disease.Acta Neuropathol (Berlin)96: 628–636

    Article  CAS  Google Scholar 

  215. May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat.Neuron5: 831–839

    Article  PubMed  CAS  Google Scholar 

  216. Akiyama H, Kawamata T, Dedhar S, McGeer PL (1991) Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue.J Neuroimmunol32: 19–28

    Article  PubMed  CAS  Google Scholar 

  217. McGeer PL, McGeer EG, Kawamata T, Yamada T, Akiyama H (1991) Reactions of the immune system in chronic degenerative neurological diseases. Can.JNeurol Sci18: 376–379

    CAS  Google Scholar 

  218. Kalaria RN, Kroon SN (1992) Complement inhibitor C4-binding protein in amyloid deposits containing serum amyloid P in Alzheimer’s disease.Biochem Biophys Res Commun186: 461–466

    Article  PubMed  CAS  Google Scholar 

  219. Tuohy JM, Schultz JJ, Brachova L, Lue LF, Rogers J (1993) Evidence of increased levels of C4 binding protein in Alzheimer’s disease.Neurosci Abstr(Abstract) 19: 834

    Google Scholar 

  220. Zhan SS, Veerhuis R, Kamphorst W, Eikelenboom P (1995) Distribution of beta amyloid associated proteins in plaques in Alzheimer’s disease and in the non-demented elderly.Neurodegeneration4: 291–297

    Article  PubMed  CAS  Google Scholar 

  221. Walker DG, Yasuhara O, Patston PA, McGeer EG, McGeer PL (1995) Complement Cl inhibitor is produced by brain tissue and is cleaved in Alzheimer disease.Brain Res675: 75–82

    Article  PubMed  CAS  Google Scholar 

  222. Veerhuis R, Janssen I, Hoozemans JJ, De Groot CJ, Hack CE, Eikelenboom P (1998) Complement Cl-inhibitor expression in Alzheimer’s disease.Acta Neuropathol96: 287–296

    Article  PubMed  CAS  Google Scholar 

  223. Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins.J Neuroimmunol30: 81–93

    Article  PubMed  CAS  Google Scholar 

  224. Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR (1999) Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells.Glia26: 201–211

    Article  PubMed  CAS  Google Scholar 

  225. Nataf S, Stahel PF, Davoust N, Barnum SR (1999) Complement anaphylatoxin receptors on neurons: new tricks for old receptors?Trends Neurosci22: 397–402

    Article  PubMed  CAS  Google Scholar 

  226. Gasque P, Singhrao SK, Neal JW, Gotze O, Morgan BP (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. AmJ Pathol150: 31–41

    PubMed  CAS  Google Scholar 

  227. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in differ-ent plaque types in Alzheimer’s disease: significance in plaque evolution.J Neuropathol Exp Neurol54: 276–281

    Article  PubMed  CAS  Google Scholar 

  228. Sheng JG, Mrak RE, Griffin WS (1995) Microglial interleukin-1 alpha expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution.Neuropathol Appl Neurobiol21: 290–301

    Article  PubMed  CAS  Google Scholar 

  229. Sheng JG, Griffin WS, Royston MC, Mrak RE (1998) Distribution of interleukin-1immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease.Neuropathol Appl Neurobiol24: 278–283

    Article  CAS  Google Scholar 

  230. Cacabelos R, Alvarez XA, Fernandez-Novoa L, Franco A, Mangues R, Pellicer A, Nishimura T (1994) Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia.Methods Find Exp Clin Pharmacol16: 141–151

    PubMed  CAS  Google Scholar 

  231. Sheng JG, Mrak RE, Griffin WS (1997) Glial-neuronal interactions in Alzheimer disease: progressive association of IL-lalpha+microglia and S100beta+astrocytes with neurofibrillary tangle stages.J Neuropathol Exp Neurol56: 285–290

    Article  PubMed  CAS  Google Scholar 

  232. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease.Proc Natl Acad Sci USA86: 7611–7615

    Article  PubMed  CAS  Google Scholar 

  233. Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Grimaldi LM (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain?J Neuroimmunol103: 97–102

    Article  PubMed  CAS  Google Scholar 

  234. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients.Neurosci Lett202: 17–20

    Article  PubMed  CAS  Google Scholar 

  235. Zhu SG, Sheng JG, Jones RA, Brewer MM, Zhou XQ, Mrak RE, Griffin WS (1999) Increased interleukin-lbeta converting enzyme expression and activity in Alzheimer disease.J Neuropathol Exp Neurol58: 582–587

    Article  PubMed  CAS  Google Scholar 

  236. Sheng JG, Mrak RE, Griffin WS (1994) S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques.J Neurosci Res39: 398–404

    Article  PubMed  CAS  Google Scholar 

  237. Sheng JG, Mrak RE, Rovnaghi CR, Kozlowska E, Van Eldik LJ, Griffin WS (1996) Human brain S100 beta and S100 beta mRNA expression increases with age: pathogenic implications for Alzheimer’s disease.Neurobiol Aging17: 359–363

    Article  PubMed  CAS  Google Scholar 

  238. Marshak DR, Pesce SA, Stanley LC, Griffin WS (1992) Increased S100 beta neurotrophic activity in Alzheimer’s disease temporal lobe.Neurobiol Aging13: 1–7

    Article  PubMed  CAS  Google Scholar 

  239. Van Eldik LJ, Griffin WS (1994) S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions.Biochim Biophys Acta1223: 398–403

    Article  PubMed  Google Scholar 

  240. Araujo DM, Lapchak PA (1994) Induction of immune system mediators in the hippocampal formation in Alzheimer’s and Parkinson’s diseases: selective effects on specific interleukins and interleukin receptors.Neuroscience61: 745–754

    Article  PubMed  CAS  Google Scholar 

  241. Luber-Narod J, Rogers J (1988) Immune system associated antigens expressed by cells of the human central nervous system.Neurosci Lett94: 17–22

    Article  PubMed  CAS  Google Scholar 

  242. Huell M, Strauss S, Volk B, Berger M, Bauer J (1995) Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients.Acta Neuropathol (Berlin)89: 544–551

    Article  CAS  Google Scholar 

  243. Hull M, Berger M, Volk B, Bauer J (1996) Occurrence of interleukin-6 in cortical plaques of Alzheimer’s disease patients may precede transformation of diffuse into neuritic plaques.Ann NY Acad Sci 777205–212

    Article  PubMed  CAS  Google Scholar 

  244. Hull M, Strauss S, Berger M, Volk B, Bauer J (1996) The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer’s disease.Behav Brain Res78: 37–41

    Article  PubMed  CAS  Google Scholar 

  245. Zarow C, Schlueter KE, Zhang Q (1996) Interleukin-6 mRNA is elevated in Alzheimer disease brain.Soc Neurosci Abstr22: 214

    Google Scholar 

  246. Walker DG, Kim SU, McGeer PL (1995) Complement and cytokine gene expression in cultured microglia derived from postmortem human brains.J Neurosci Res.40: 478–493

    Article  PubMed  CAS  Google Scholar 

  247. Wood JA, Wood PL, Ryan R, Graff-Radford NR, Pilapil C, Robitaille Y, Quirion R (1993) Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1 beta or IL-1RA but increases in the associated acute phase proteins IL-6, alpha 2-macroglobulin and C-reactive protein.Brain Res629: 245–252

    Article  PubMed  CAS  Google Scholar 

  248. Kalman J, Juhasz A, Laird G, Dickens P, Jardanhazy T, Rimanoczy A, Boncz I, Parry-Jones WL, Janka Z (1997) Serum interleukin-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer’s disease.Acta Neurol Scand96: 236–240

    Article  PubMed  CAS  Google Scholar 

  249. Singh VK (1997) Circulating cytokines in Alzheimer’s disease.J Psychiatr Res31: 657–660

    Article  PubMed  CAS  Google Scholar 

  250. Yamada K, Kono K, Umegaki H, Iguchi A, Fukatsu T, Nakashima N, Nishiwaki H, Shimada Y, Sugita Y (1995) Decreased interleukin-6 level in the cerebrospinal fluid of patients with Alzheimer-type dementia.Neurosci Lett186: 219–221

    Article  PubMed  CAS  Google Scholar 

  251. Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease.Neurosci Lett129: 318–320

    Article  PubMed  CAS  Google Scholar 

  252. Tarkowski E, Blennow K, Wallin A, Tarkowski A (1999) Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia.J Clin Immunol19: 223–230

    Article  PubMed  CAS  Google Scholar 

  253. Cacabelos R, Alvarez XA, Franco-Maside A, Fernandez-Novoa L, Caamano J (1994) Serum tumor necrosis factor (TNF) in Alzheimer’s disease and multi-infarct dementia.Methods Find Exp Clin Pharmacol16: 29–35

    PubMed  CAS  Google Scholar 

  254. Tarkowski E, Liljeroth AM, Nilsson A, Ricksten A, Davidsson P, Minthon L, Blennow K (2000) TNF gene polymorphism and its relation to intracerebral production of TNFalpha and TNFbeta in AD.Neurology54: 2077–2081

    Article  PubMed  CAS  Google Scholar 

  255. Kawaguchi N, Yamada T, Yoshiyama Y (1997) Expression of interferon-alpha mRNA in human brain tissues.No To Shinkei49: 69–73

    PubMed  CAS  Google Scholar 

  256. Yamada T, Horisberger MA, Kawaguchi N, Moroo I, Toyoda T (1994) Immunohisto-chemistry using antibodies to alpha-interferon and its induced protein, MxA, in Alzheimer’s and Parkinson’s disease brain tissues.Neurosci Lett181: 61–64

    Article  PubMed  CAS  Google Scholar 

  257. Akiyama H, Ikeda K, Katoh M, McGeer EG, McGeer PL (1994) Expression of MRP14, 27E10, interferon-alpha and leukocyte common antigen by reactive microglia in postmortem human brain tissue.J Neuroimmunol50: 195–201

    Article  PubMed  CAS  Google Scholar 

  258. Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis.Brain Res639: 171–174

    Article  PubMed  CAS  Google Scholar 

  259. Wisniewski T, Lalowski M, Baumann M, Rauvala H, Raulo E, Nolo R, Frangione B (1996) HB-GAM is a cytokine present in Alzheimer’s and Down’s syndrome lesions.Neuroreport 7: 667–671

    Article  PubMed  CAS  Google Scholar 

  260. Chao CC, Ala TA, Hu S, Crossley KB, Sherman RE, Peterson PK, Frey WH (1994) Serum cytokine levels in patients with Alzheimer’s disease.Clin Diagn Lab Immunol1:433–436

    PubMed  CAS  Google Scholar 

  261. Chao CC, Hu S, Frey WH, Ala TA, Tourtellotte WW, Peterson PK (1994) Transforming growth factor beta in Alzheimer’s disease.Clin Diagn Lab Immunol1:109–110

    PubMed  CAS  Google Scholar 

  262. Peress NS, Perillo E (1995) Differential expression of TGF-beta 1, 2 and 3 isotypes in Alzheimer’s disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains.J Neuropathol Exp Neurol54: 802–811

    Article  PubMed  CAS  Google Scholar 

  263. van der Wal EA, Gomez-Pinilla F, Cotman CW (1993) Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies.Neuroreport4: 69–72

    Article  PubMed  Google Scholar 

  264. Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB (1995) Altered expression of transforming growth factor-beta in Alzheimer’s disease.Neurology45: 1561–1569

    Article  PubMed  CAS  Google Scholar 

  265. Yasuhara O, Muramatsu H, Kim SU, Muramatsu T, Maruta H, McGeer PL (1993) Midkine, a novel neurotrophic factor, is present in senile plaques of Alzheimer disease.Biochem Biophys Res Commun192: 246–251

    Article  PubMed  CAS  Google Scholar 

  266. Thorns V, Masliah E (1999) Evidence for neuroprotective effects of acidic fibroblast growth factor in Alzheimer disease.J Neuropathol Exp Neurol58: 296–306

    Article  PubMed  CAS  Google Scholar 

  267. Kimura H, Tooyama I, McGeer PL (1994) Acidic FGF expression in the surroundings of senile plaques.Tohoku J Exp Med174: 279–293

    Article  PubMed  CAS  Google Scholar 

  268. Cummings BJ, Su JH, Cotman CW (1993) Neuritic involvement within bFGF immunopositive plaques of Alzheimer’s disease.Exp Neurol124: 315–325

    Article  PubMed  CAS  Google Scholar 

  269. Gomez-Pinilla F, Cummings BJ, Cotman CW (1990) Induction of basic fibroblast growth factor in Alzheimer’s disease pathology.Neuroreport1:211–214

    Article  PubMed  CAS  Google Scholar 

  270. Stopa EG, Gonzalez AM, Chorsky R, Corona RJ, Alvarez J, Bird ED, Baird A (1990) Basic fibroblast growth factor in Alzheimer’s disease.Biochem Biophys Res Commun171: 690–696

    Article  PubMed  CAS  Google Scholar 

  271. Nakamura S, Arima K, Haga S, Aizawa T, Motoi Y, Otsuka M, Ueki A, Ikeda K (1998) Fibroblast growth factor (FGF)-9 immunoreactivity in senile plaques.Brain Res814: 222–225

    Article  PubMed  CAS  Google Scholar 

  272. Connor B, Beilharz EJ, Williams C, Synek B, Gluckman PD, Faull RL, Dragunow M (1997) Insulin-like growth factor-I (IGF-I) immunoreactivity in the Alzheimer’s disease temporal cortex and hippocampus.Brain Res Mol Brain Res49: 283–290

    Article  PubMed  CAS  Google Scholar 

  273. Tham A, Nordberg A, Grissom FE, Carlsson-Skwirut C, Viitanen M, Sara VR (1993) Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type.J Neural Transm Park Dis Dement Sect5: 165–176

    Article  PubMed  CAS  Google Scholar 

  274. Fenton H, Finch PW, Rubin JS, Rosenberg JM, Taylor WG, Kuo-Leblanc V, Rodriguez-Wolf M, Baird A, Schipper HM, Stopa EG (1998) Hepatocyte growth factor (HGF/SF) in Alzheimer’s disease.Brain Res779: 262–270

    Article  PubMed  CAS  Google Scholar 

  275. Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia.Brain Res Mol Brain Res62: 101–105

    Article  PubMed  CAS  Google Scholar 

  276. Masliah E, Mallory M, Alford M, DeTeresa R, Saitoh T (1995) PDGF is associated with neuronal and glial alterations of Alzheimer’s disease.Neurobiol Aging16: 549–556

    Article  PubMed  CAS  Google Scholar 

  277. Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas.Arch Neurol57: 846–851

    Article  PubMed  CAS  Google Scholar 

  278. Scott SA, Mufson EJ, Weingartner JA, Skau KA, Crutcher KA (1995) Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis.J Neurosci15: 6213–6221

    PubMed  CAS  Google Scholar 

  279. Hellweg R, Gericke CA, Jendroska K, Hartung HD, Cervos-Navarro J (1998) NGF content in the cerebral cortex of non-demented patients with amyloid-plaques and in symptomatic Alzheimer’s disease.Int J Dey Neurosci16: 787–794

    Article  CAS  Google Scholar 

  280. Crutcher KA, Scott SA, Liang S, Everson WV, Weingartner J (1993) Detection of NGFlike activity in human brain tissue: increased levels in Alzheimer’s disease.J Neurosci13: 2540–2550

    PubMed  CAS  Google Scholar 

  281. Narisawa-Saito M, Wakabayashi K, Tsuji S, Takahashi H, Nawa H (1996) Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease.Neuroreport7: 2925–2928

    Article  PubMed  CAS  Google Scholar 

  282. Fahnestock M, Scott SA, Jette N, Weingartner JA, Crutcher KA (1996) Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer’s disease parietal cortex.Brain Res Mol Brain Res42: 175–178

    Article  PubMed  CAS  Google Scholar 

  283. Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease.Exp Neurol106: 222–236

    Article  PubMed  CAS  Google Scholar 

  284. Mufson EJ, Conner JM, Kordower JH (1995) Nerve growth factor in Alzheimer’s dis-ease: defective retrograde transport to nucleus basalis.Neuroreport6: 1063–1066

    Article  PubMed  CAS  Google Scholar 

  285. Hock C, Heese K, Muller-Spahn F, Huber P, Riesen W, Nitsch RM, Otten U (2000) Increased CSF levels of nerve growth factor in patients with Alzheimer’s disease.Neurology54: 2009–2011

    Article  PubMed  CAS  Google Scholar 

  286. Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease.Brain Res Mol Brain Res. 76347–354

    Article  PubMed  CAS  Google Scholar 

  287. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease.Neuron 7695–702

    Article  PubMed  CAS  Google Scholar 

  288. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991)BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease.Neuron 7695–702

    Article  PubMed  CAS  Google Scholar 

  289. Soontornniyomkij V, Wang G, Pittman CA, Hamilton RL, Wiley CA, Achim CL (1999) Absence of brain-derived neurotrophic factor and trkB receptor immunoreactivity in glia of Alzheimer’s disease.Acta Neuropathol (Berlin) 98345–348

    Article  CAS  Google Scholar 

  290. Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease.Brain Res Mol Brain Res 4971–81

    Article  PubMed  CAS  Google Scholar 

  291. Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies.J Neuropathol Exp Neurol 58729–739

    Article  CAS  Google Scholar 

  292. Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease.Neuroscience 881015–1032

    Article  PubMed  CAS  Google Scholar 

  293. Hock C, Heese K, Muller-Spahn F, Hulette C, Rosenberg C, OttenU(1998) Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease.Neurosci Lett 241151–154

    Article  PubMed  CAS  Google Scholar 

  294. Mufson EJ, Lavine N, Jaffar S, Kordower JH, Quirion R, Saragovi HU (1997) Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease.Exp Neurol 14691–103

    Article  PubMed  CAS  Google Scholar 

  295. Boissiere F, Hunot S, Faucheux B, Hersh LB, Agid Y, Hirsch EC (1997) Trk neurotrophin receptors in cholinergic neurons of patients with Alzheimer’s disease.Dement Geriatr Cogn Disord 81–8

    PubMed  CAS  Google Scholar 

  296. Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF (1996) Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer’s disease. Neuroscience 75373–387

    Article  PubMed  CAS  Google Scholar 

  297. Boissiere F, Lehericy S, Strada O, Agid Y, Hirsch EC (1996) Neurotrophin receptors and selective loss of cholinergic neurons in Alzheimer disease.Mol Chem Neuropathol 28219–223

    Article  PubMed  CAS  Google Scholar 

  298. Boissiere F, Faucheux B, Ruberg M, Agid Y, Hirsch EC (1997) Decreased TrkA gene expression in cholinergic neurons of the striatum and basal forebrain of patients with Alzheimer’s disease.Exp Neurol 145245–252

    CAS  Google Scholar 

  299. Mufson EJ, Li JM, Sobreviela T, Kordower JH (1996) Decreased trkA gene expression within basal forebrain neurons in Alzheimer’s disease.Neuroreport 825–29

    Article  PubMed  CAS  Google Scholar 

  300. Connor B, Young D, Lawlor P, Gai W, Waldvogel H, Faull RL, Dragunow M (1996) Trk receptor alterations in Alzheimer’s disease.Brain Res Mol Brain Res 421–17

    Article  PubMed  CAS  Google Scholar 

  301. Allen SJ, Wilcock GK, Dawbarn D (1999) Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease.Biochem Biophys Res Commun264: 648–651

    Article  PubMed  CAS  Google Scholar 

  302. Garlind A, Brauner A, Hojeberg B, Basun H, Schultzberg M (1999) Soluble interleukin1 receptor type II levels are elevated in cerebrospinal fluid in Alzheimer’s disease patients.Brain Res826: 112–116

    Article  PubMed  CAS  Google Scholar 

  303. Yasuhara O, Matsuo A, Terai K, Walker DG, Berger AE, Akiguchi I, Kimura J, McGeer PL (1997) Expression of interleukin-1 receptor antagonist protein in post-mortem human brain tissues of Alzheimer’s disease and control cases.Acta Neuropathol (Berlin)93: 414–420

    Article  CAS  Google Scholar 

  304. Hampel H, Sunderland T, Kotter HU, Schneider C, Teipel SJ, Padberg F, Dukoff R, Levy J, Moller HJ (1998) Decreased soluble interleukin-6 receptor in cerebrospinal fluid of patients with Alzheimer’s disease.Brain Res780: 356–359

    Article  PubMed  CAS  Google Scholar 

  305. Hampel H, Teipel SJ, Padberg F, Haslinger A, Riemenschneider M, Schwarz MJ, Kotter HU, Scheloske M, Buch K, Stubner S et al (1999) Discriminant power of combined cerebrospinal fluid tau protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer’s disease.Brain Res823: 104–112

    Article  PubMed  CAS  Google Scholar 

  306. Lippa CF, Flanders KC, Kim ES, Croul S (1998) TGF-beta receptors-I and -II immunoexpression in Alzheimer’s disease: a comparison with aging and progressive supranuclear palsy.Neurobiol Aging19: 527–533

    Article  PubMed  CAS  Google Scholar 

  307. de la Monte SM, Sohn YK, Wands JR (1997) Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease.J Neurol Sci152: 73–83

    Article  Google Scholar 

  308. Nishimura T, Akiyama H, Yonehara S, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (1995) Fas antigen expression in brains of patients with Alzheimer-type dementia.Brain Res695: 137–145

    Article  PubMed  CAS  Google Scholar 

  309. Birecree E, Whetsell WOJ, Stoscheck C, King LEJ, Nanney LB (1988) Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer’s disease.J Neuropathol Exp Neurol47: 549–560

    Article  PubMed  CAS  Google Scholar 

  310. Styren SD, Mufson EJ, Styren GC, Civin WH, Rogers J (1990) Epidermal growth factor receptor expression in demented and aged human brain.Brain Res512: 347–352

    Article  PubMed  CAS  Google Scholar 

  311. Takami K, Matsuo A, Terai K, Walker DG, McGeer EG, McGeer PL (1998) Fibroblast growth factor receptor-1 expression in the cortex and hippocampus in Alzheimer’s disease.Brain Res802: 89–97

    Article  PubMed  CAS  Google Scholar 

  312. Ferrer I, Marti E (1998) Distribution of fibroblast growth factor receptor-1 (FGFR-1) and FGFR-3 in the hippocampus of patients with Alzheimer’s disease.Neurosci Lett240: 139–142

    Article  PubMed  CAS  Google Scholar 

  313. Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT (2000) Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes:in vitroERK1/2 activation and role in Alzheimer’s disease.J Neuroimmunol108: 227–235

    Article  PubMed  CAS  Google Scholar 

  314. Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT (1998) Immunohistochemical study of the beta-chemokine receptors CCR3 and CCRS and their ligands in normal and Alzheimer’s disease brains. AmJ Pathol153: 31–37

    Article  PubMed  CAS  Google Scholar 

  315. Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T (1997) Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease.Psychiatry Clin Neurosci51: 135–138

    Article  PubMed  CAS  Google Scholar 

  316. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J et al (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system.J Immunol158: 2882–2890

    PubMed  CAS  Google Scholar 

  317. Xia M, Qin S, McNamara M, Mackay C, Hyman BT (1997) Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease.Am J Pathol150: 1267–1274

    PubMed  CAS  Google Scholar 

  318. Tooyama I, Kimura H, Akiyama H, McGeer PL (1990) Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease.Brain Res523: 273–280

    Article  PubMed  CAS  Google Scholar 

  319. McGeer PL, McGeer EG, Kawamata T, Yamada T, Akiyama H (1991) Reactions of the immune system in chronic degenerative neurological diseases.Can J Neurol Sci18: 376–379

    PubMed  CAS  Google Scholar 

  320. Frohman EM, Frohman TC, Gupta S, de Fougerolles A, van den Noort S (1991) Expression of intercellular adhesion molecule 1 (ICAM-1) in Alzheimer’s disease.J Neurol Sci106: 105–111

    Article  PubMed  CAS  Google Scholar 

  321. Itagaki S, Akiyama H, Saito H, McGeer PL (1994) Ultrastuctural localization of complment membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease.Brain Res645: 78–84

    Article  PubMed  CAS  Google Scholar 

  322. Mattiace LA, Davies P, Dickson DW (1990) Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors.Am J Pathol136: 1101–1114

    PubMed  CAS  Google Scholar 

  323. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR.Neurosci Lett79: 195–200

    Article  PubMed  CAS  Google Scholar 

  324. Styren SD, Civin WH, Rogers J (1990) Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disease brain.Exp Neurol110: 93–104

    Article  PubMed  CAS  Google Scholar 

  325. Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity.J Neurochem70: 786–793

    Article  PubMed  CAS  Google Scholar 

  326. Gattaz WF, Cairns NJ, Levy R, Forstl H, Braus DF, Maras A (1996) Decreased phospholipase A2 activity in the brain and in platelets of patients with Alzheimer’s disease.Eur Arch Psychiatry Clin Neurosci246: 129–131

    Article  PubMed  CAS  Google Scholar 

  327. Gattaz WF, Maras A, Cairns NJ, Levy R, Forstl H (1995) Decreased phospholipase A2 activity in Alzheimer brains.Biol Psychiatry37: 13–17

    Article  PubMed  CAS  Google Scholar 

  328. Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain.Neurobiol Dis3: 51–63

    Article  PubMed  CAS  Google Scholar 

  329. Yasojima K, Schwab C, McGeer EG, McGeer PL (1999) Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs.Brain Res830: 226–236

    Article  PubMed  CAS  Google Scholar 

  330. Yermakova AV, Rollins J, Callahan LM, Rogers J, O’Banion MK (1999) Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. JNeuropathol Exp Neurol58: 1135–1146

    Article  PubMed  CAS  Google Scholar 

  331. Lukiw WJ, Bazan NG (1997) Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex.J Neurosci Res50: 937–945

    Article  PubMed  CAS  Google Scholar 

  332. Lukiw WJ, Bazan NG (1998) Strong nuclear factor-kappaB-DNA binding parallels cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer’s disease superior temporal lobe neocortex.J Neurosci Res53: 583–592

    Article  PubMed  CAS  Google Scholar 

  333. O’Banion MK, Chang JW, Coleman PD (1997) Decreased expression of prostaglandin G/H synthase-2 (PGHS-2) in Alzheimer’s disease brain.Adv Exp Med Biol407: 171–177

    PubMed  Google Scholar 

  334. Chang JW, Coleman PD, O’Banion MK (1996) Prostaglandin G/H synthase-2 (cyclooxygenase-2) mRNA expression is decreased in Alzheimer’s disease.Neurobiol Aging17: 801–808

    Article  PubMed  CAS  Google Scholar 

  335. Wong PT, McGeer PL, McGeer EG (1992) Decreased prostaglandin synthesis in postmortem cerebral cortex from patients with Alzheimer’s disease.Neurochem Int21: 197–202

    Article  PubMed  CAS  Google Scholar 

  336. Iwamoto N, Kobayashi K, Kosaka K (1989) The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients.J Neurol236: 80–84

    Article  PubMed  CAS  Google Scholar 

  337. Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ, Morrow JD (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD.Neurology53: 1495–1498

    Article  PubMed  CAS  Google Scholar 

  338. Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow JD (1999) Increased CSF F2-isoprostane concentration in probable AD.Neurology52: 562–565

    Article  PubMed  CAS  Google Scholar 

  339. Pratico D, Lee MY, V, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidationin vivo. FASEB J12: 1777–1783

    CAS  Google Scholar 

  340. Nourooz-Zadeh J, Liu EH, Yhlen B, Anggard EE, Halliwell B (1999) F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease.J Neurochem72: 734–740

    Article  PubMed  CAS  Google Scholar 

  341. Berzin TM, Zipser BD, Rafii MS, Kuo-Leblanc V, Yancopoulos GD, Glass DJ, Fallon JR, Stopa EG (2000) Agrin and microvascular damage in Alzheimer’s disease.Neurobiol Aging21: 349–355

    Article  PubMed  CAS  Google Scholar 

  342. Akiyama H, Ikeda K, Kondo H, McGeer PL (1992) Thrombin accumulation in brains of patients with Alzheimer’s disease.Neurosci Lett146: 152–154

    Article  PubMed  CAS  Google Scholar 

  343. Akiyama H (1997) Thrombin deposition in brains of patients with Alzheimer’s disease — activation of the coagulation system in the central nervous system.Rinsho Byori(Suppl) 104: 117–123

    CAS  Google Scholar 

  344. McGeer PL, Klegeris A, Walker DG, Yasuhara O, McGeer EG (1994) Pathological proteins in senile plaques.Tohoku J Exp Med174: 269–277

    Article  PubMed  CAS  Google Scholar 

  345. Akiyama H (1994) Inflammatory response in Alzheimer’s disease.Tohoku J Exp Med174: 295–303

    Article  PubMed  CAS  Google Scholar 

  346. Kalaria RN, Golde T, Kroon SN, Perry G (1993) Serine protease inhibitor antithrombin III and its messenger RNA in the pathogenesis of Alzheimer’s disease.Am J Pathol143: 886–893

    PubMed  CAS  Google Scholar 

  347. McComb RD, Miller KA, Carson SD (1991) Tissue factor antigen in senile plaques of Alzheimer’s disease.Am J Pathol139: 491–494

    PubMed  CAS  Google Scholar 

  348. Hollister RD, Kisiel W, Hyman BT (1996) Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer’s disease.Brain Res728: 13–19

    Article  PubMed  CAS  Google Scholar 

  349. Yasuhara O, Walker DG, McGeer PL (1994) Hageman factor and its binding sites are present in senile plaques of Alzheimer’s disease.Brain Res654: 234–240

    Article  PubMed  CAS  Google Scholar 

  350. Rebeck GW, Harr SD, Strickland DK, Hyman BT (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein.Ann Neurol37: 211–217

    Article  PubMed  CAS  Google Scholar 

  351. Alonso DF, Farias EF, Famulari AL, Dominguez RO, Kohan S, de Lustig ES (1996) Excessive urokinase-type plasminogen activator activity in the euglobulin fraction of patients with Alzheimer-type dementia.J Neurol Sci139: 83–88

    Article  PubMed  CAS  Google Scholar 

  352. Sutton R, Keohane ME, VanderBerg SR, Gonias SL (1994) Plasminogen activator inhibitor-1 in the cerebrospinal fluid as an index of neurological disease.Blood Coagul Fibrinolysis5: 167–171

    Article  PubMed  CAS  Google Scholar 

  353. Akiyama H, Ikeda K, Kondo H, Kato M, McGeer PL (1993) Microglia express the type 2 plasminogen activator inhibitor in the brain of control subjects and patients with Alzheimer’s disease.Neurosci Lett164: 233–235

    Article  PubMed  CAS  Google Scholar 

  354. Wagner SL, Geddes JW, Cotman CW, Lau AL, Gurwitz D, Isackson PJ, Cunningham DD (1989) Protease nexin-1, an antithrombin with neurite outgrowth activity, is reduced in Alzheimer disease.Proc Natl Acad Sci USA86: 8284–8288

    Article  PubMed  CAS  Google Scholar 

  355. Vaughan PJ, Su J, Cotman CW, Cunningham DD (1994) Protease nexin-1, a potent thrombin inhibitor, is reduced around cerebral blood vessels in Alzheimer’s disease.Brain Res668: 160–170

    Article  PubMed  CAS  Google Scholar 

  356. Choi BH, Kim RC, Vaughan PJ, Lau A, Van Nostrand WE, Cotman CW, Cunningham DD (1995) Decreases in protease nexins in Alzheimer’s disease brain.Neurobiol Aging16: 557–562

    Article  PubMed  CAS  Google Scholar 

  357. Rosenblatt DE, Geula C, Mesulam MM (1989) Protease nexin I immunostaining in Alzheimer’s disease.Ann Neurol26: 628–634

    Article  PubMed  CAS  Google Scholar 

  358. Akiyama H, Kondo H, Ikeda K, Arai T, Kato M, McGleer PL (1995) Immunohistochemical detection of coagulation factor XIIIa in postmortem human brain tissue.Neurosci Lett202: 29–32

    Article  PubMed  CAS  Google Scholar 

  359. Verbeek MM, Otte-Holler I, Westphal JR, Wesseling P, Ruiter DJ, de Waal RM (1994) Accumulation of intercellular adhesion molecule-1 in senile plaques in brain tissue of patients with Alzheimer’s disease. AmJ Pathol144: 104–116

    PubMed  CAS  Google Scholar 

  360. Gillian AM, Brion JP, Breen KC (1994) Expression of the neural cell adhesion molecule (NCAM) in Alzheimer’s disease.Neurodegeneration3: 283–291

    PubMed  CAS  Google Scholar 

  361. Yew DT, Li WP, Webb SE, Lai HW, Zhang L (1999) eurotransmitters, peptides, and neural cell adhesion molecules in the cortices of normal elderly humans and Alzheimer patients: a comparison.Exp Gerontol34: 117–133

    Article  PubMed  CAS  Google Scholar 

  362. Akiyama H, Tooyama I, Kawamata T, Ikeda K, McGeer PL (1993) Morphological diversities of CD44 positive astrocytes in the cerebral cortex of normal subjects and patients with Alzheimer’s disease.Brain Res632: 249–259

    Article  PubMed  CAS  Google Scholar 

  363. Lawlor BA, Swanwick GR, Feighery C, Walsh JB, Coakley D (1996) Acute phase reactants in Alzheimer’s disease.Biol Psychiatry39: 1051–1052

    Article  PubMed  CAS  Google Scholar 

  364. Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease.Cell52: 487–501

    Article  PubMed  CAS  Google Scholar 

  365. Abraham CR, Shirahama T, Potter H (1990) Alpha 1-antichymotrypsin is associated solely with amyloid deposits containing the beta-protein. Amyloid and cell localization of alpha 1-antichymotrypsin.Neurobiol Aging 11123–129

    Article  PubMed  CAS  Google Scholar 

  366. Rozemuller JM, Stam FC, Eikelenboom P (1990) Acute phase proteins are present in amorphous plaques in the cerebral but not in the cerebellar cortex of patients with Alzheimer’s disease.Neurosci Lett119: 75–78

    Article  PubMed  CAS  Google Scholar 

  367. Rozemuller JM, Abbink JJ, Kamp AM, Stam FC, Hack CE, Eikelenboom P (1991) Distribution pattern and functional state of alpha 1-antichymotrypsin in plaques and vascular amyloid in Alzheimer’s disease. A immunohistochemical study with monoclonal antibodies against native and inactivated alpha 1-antichymotrypsin.Acta Neuropathol (Berlin)82: 200–207

    Article  CAS  Google Scholar 

  368. Licastro F, Morini MC, Polazzi E, Davis LJ (1995) Increased serum alpha 1-antichymotrypsin in patients with probable Alzheimer’s disease: an acute phase reactant without the peripheral acute phase response.J Neuroimmunol 5771–75

    Article  PubMed  CAS  Google Scholar 

  369. Licastro F, Parnetti L, Morini MC, Davis LJ, Cucinotta D, Gaiti A, Senin U (1995) Acute phase reactant alpha 1-antichymotrypsin is increased in cerebrospinal fluid and serum of patients with probable Alzheimer disease.Alzheimer Dis Assoc Disord9: 112–118

    Article  PubMed  CAS  Google Scholar 

  370. Lieberman J, Schleissner L, Tachiki KH, Kling AS (1995) Serum alpha 1-antichymotrypsin level as a marker for Alzheimer-type dementia.Neurobiol Aging16: 747–753

    Article  PubMed  CAS  Google Scholar 

  371. Van Gool D, De Strooper B, Van Leuven F, Triau E, Dom R (1993) alpha 2-Macroglobulin expression in neuritic-type plaques in patients with Alzheimer’s disease.Neurobiol Aging14: 233–237

    Article  Google Scholar 

  372. Wetterling T, Tegtmeyer KF (1994) Serum alpha 1-antitrypsin and alpha 2-macroglobulin in Alzheimer’s and Binswanger’s disease.Clin Investig72: 196–199

    Article  PubMed  CAS  Google Scholar 

  373. Liang JS, Sloane JA, Wells JM, Abraham CR, Fine RE, Sipe JD (1997) Evidence for local production of acute phase response apolipoprotein serum amyloid A in Alzheimer’s disease brain.Neurosci Lett225: 73–76

    Article  PubMed  CAS  Google Scholar 

  374. Elovaara I, Maury CP, Palo J (1986) Serum amyloid A protein, albumin and prealbumin in Alzheimer’s disease and in demented patients with Down’s syndrome.Acta NeurolScand. 74: 245–250

    Article  PubMed  CAS  Google Scholar 

  375. Coria F, Castano E, Prelli F, Larrondo-Lillo M, van Duinen S, Shelanski ML, Frangione B (1988) Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis.Lab Invest58: 454–458

    PubMed  CAS  Google Scholar 

  376. Duong T, Pommier EC, Scheibel AB (1989) Immunodetection of the amyloid P component in Alzheimer’s disease.Acta Neuropathol (Berlin)78: 429–437

    Article  CAS  Google Scholar 

  377. Akiyama H, Yamada T, Kawamata T, McGeer PL (1991) Association of amyloid P component with complement proteins in neurologically diseased brain tissue.Brain Res548: 349–352

    Article  PubMed  CAS  Google Scholar 

  378. Iwamoto N, Nishiyama E, Ohwada J, Arai H (1994) Demonstration of CRP immunoreactivity in brains of Alzheimer’s disease: immunohistochemical study using formic acid pretreatment of tissue sections.Neurosci Lett177: 23–26

    Article  PubMed  CAS  Google Scholar 

  379. Duong T, Nikolaeva M, Acton PJ (1997) C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer’s disease.Brain Res749: 152–156

    Article  PubMed  CAS  Google Scholar 

  380. Loeffler DA, DeMaggio AJ, Juneau PL, Brickman CM, Mashour GA, Finkelman JH, Pomara N, Lewitt PA (1994) Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer’s disease but not Parkinson’s disease.Alzheimer Dis Assoc Disord8: 190–197

    Article  PubMed  CAS  Google Scholar 

  381. Loeffler DA, Lewitt PA, Juneau PL, Sima AA, Nguyen HU, DeMaggio AJ, Brickman CM, Brewer GJ, Dick RD, Troyer MD et al (1996) Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders.Brain Res738: 265–274

    Article  PubMed  CAS  Google Scholar 

  382. Connor JR, Tucker P, Johnson M, Snyder B (1993) Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease.Neurosci Lett159: 88–90

    Article  PubMed  CAS  Google Scholar 

  383. Kawamata T, Tooyama I, Yamada T, Walker DG, McGeer PL (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal human brain. AmJ Pathol142: 1574–1585

    PubMed  CAS  Google Scholar 

  384. Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR (1994) The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis.Brain Res650: 20–31

    Article  PubMed  CAS  Google Scholar 

  385. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease.Ann Neurol36: 747–751

    Article  PubMed  CAS  Google Scholar 

  386. Lovell MA, Gabbita SP, Markesbery WR (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF.J Neurochem72: 771–776

    Article  PubMed  CAS  Google Scholar 

  387. Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydrox-ynonenal in ventricular fluid in Alzheimer’s disease.Neurobiol Aging18: 457–461

    Article  PubMed  CAS  Google Scholar 

  388. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease.Neurobiol Aging19: 33–36

    Article  PubMed  CAS  Google Scholar 

  389. Lovell MA, Xie C, Markesbery WR (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease.Neurology51: 1562–1566

    Article  PubMed  CAS  Google Scholar 

  390. Van Muiswinkel FL, DeGroot C, Rozemuller-Kwakkel J, Eikelenboom P (1999) Enhanced expression of microglial NADPH-oxidase (p22-phox) in Alzheimer’s disease. In: K Iqbal, D Swaab, B Winblad, HM Wisniewski (eds): John Wiley&Sons, London, UK, 451–456

    Google Scholar 

  391. Samudralwar DL, Diprete CC, Ni BF, Ehmann WD, Markesbery WR (1995) Elemental imbalances in the olfactory pathway in Alzheimer’s disease.J Neurol Sci130: 139–145

    Article  PubMed  CAS  Google Scholar 

  392. Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE (1988) Regional brain trace-element studies in Alzheimer’s disease.Neurotoxicology9: 1–7

    PubMed  CAS  Google Scholar 

  393. Ehmann WD, Markesbery WR, Alauddin M, Hossain TI, Brubaker EH (1986) Brain trace elements in Alzheimer’s disease.Neurotoxicology7: 195–206

    PubMed  CAS  Google Scholar 

  394. Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study.Ann Neurol31: 286–292

    Article  PubMed  CAS  Google Scholar 

  395. Grundke-Iqbal I, Fleming J, Tung YC, Lassmann H, Iqbal K, Joshi JG (1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia.Acta Neuropathol (Berlin)81: 105–110

    Article  CAS  Google Scholar 

  396. Fleming J, Joshi JG (1987) Ferritin: isolation of aluminum-ferritin complex from brain.Proc Natl Acad Sci USA84: 7866–7870

    Article  PubMed  CAS  Google Scholar 

  397. Kennard ML, Feldman H, Yamada T, Jefferies WA (1996) Serum levels of the iron binding protein p97 are elevated in Alzheimer’s disease.Nat Med2: 1230–1235

    Article  PubMed  CAS  Google Scholar 

  398. Jefferies WA, Food MR, Gabathuler R, Rothenberger S, Yamada T, Yasuhara O, McGeer PL (1996) Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin.Brain Res712: 122–126

    Article  PubMed  CAS  Google Scholar 

  399. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease.Neurology45: 1594–1601

    Article  PubMed  CAS  Google Scholar 

  400. Subbarao KV, Richardson JS, Ang LC (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidationin vitro. J Neurochem55: 342–345

    Article  PubMed  CAS  Google Scholar 

  401. Balazs L, Leon M (1994) Evidence of an oxidative challenge in the Alzheimer’s brain.Neurochem Res19: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  402. Palmer AM, Burns MA (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease.Brain Res645: 338–342

    Article  PubMed  CAS  Google Scholar 

  403. Lee SC, Zhao ML, Hirano A, Dickson DW (1999) Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques.J Neuropathol Exp Neurol58: 1163–1169

    Article  PubMed  CAS  Google Scholar 

  404. Terai K, Matsuo A, McGeer PL (1996) Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease.Brain Res735: 159–168

    Article  PubMed  CAS  Google Scholar 

  405. Ferrer I, Marti E, Lopez E, Tortosa A (1998) NF-kB immunoreactivity is observed in association with beta A4 diffuse plaques in patients with Alzheimer’s disease.Neuropathol Appl Neurobiol24: 271–277

    Article  PubMed  CAS  Google Scholar 

  406. Kitamura Y, Shimohama S, Ota T, Matsuoka Y, Nomura Y, Taniguchi T (1997) Alter-ation of transcription factors NF-kappaB and STAT1 in Alzheimer’s disease brains.Neurosci Lett237: 17–20

    Article  PubMed  CAS  Google Scholar 

  407. Boissiere F, Hunot S, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB in cholinergic neurons of patients with Alzheimer’s disease.Neuroreport8: 2849–2852

    Article  PubMed  CAS  Google Scholar 

  408. Yamamoto-Sasaki M, Ozawa H, Saito T, Rosier M, Riederer P (1999) Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type.Brain Res824: 300–303

    Article  PubMed  CAS  Google Scholar 

  409. Yamada T, Yoshiyama Y, Kawaguchi N (1997) Expression of activating transcription factor-2 (ATF-2), one of the cyclic AMP response element (CRE) binding proteins, in Alzheimer disease and non-neurological brain tissues.Brain Res749: 329–334

    Article  PubMed  CAS  Google Scholar 

  410. Lu W, Mi R, Tang H, Liu S, Fan M, Wang L (1998) Over-expression of c-fos mRNA in the hippocampal neurons in Alzheimer’s disease.Chin Med J (Engl)111: 35–37

    CAS  Google Scholar 

  411. Marcus DL, Strafaci JA, Miller DC, Masia S, Thomas CG, Rosman J, Hussain S, Freedman ML (1998) Quantitative neuronal c-fos and c-jun expression in Alzheimer’s disease.Neurobiol Aging19: 393–400

    Article  PubMed  CAS  Google Scholar 

  412. Anderson AJ, Cummings BJ, Cotman CW (1994) Increased immunoreactivity for Jun-and Fos-related proteins in Alzheimer’s disease: association with pathology.Exp Neurol125: 286–295

    Article  PubMed  CAS  Google Scholar 

  413. MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M (1997) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease.Exp Neurol147: 316–332

    Article  PubMed  CAS  Google Scholar 

  414. Ferrer I, Segui J, Planas AM (1996) Amyloid deposition is associated with c-Jun expression in Alzheimer’s disease and amyloid angiopathy.NeuropatholApplNeurobiol22: 521–526

    CAS  Google Scholar 

  415. El Khoury J, Hickman SE, Thomas CA, Loike JD, Silverstein SC (1998) Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease.Neurobiol Aging19: S81—S84

    Article  PubMed  Google Scholar 

  416. Honda M, Akiyama H, Yamada Y, Kondo H, Kawabe Y, Takeya M, Takahashi K, Suzuki H, Doi T, Sakamoto A et al (1998) Immunohistochemical evidence for a macrophage scavenger receptor in Mato cells and reactive microglia of ischemia and Alzheimer’s disease.Biochem Biophys Res Commun245: 734–740

    Article  PubMed  CAS  Google Scholar 

  417. Christie RH, Freeman M, Hyman BT (1996) Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease.Am J Pathol148: 399–403

    PubMed  CAS  Google Scholar 

  418. Shirai H, Murakami T, Yamada Y, Doi T, Hamakubo T, Kodama T (1999) Structure and function of type I and II macrophage scavenger receptors.Mech Ageing Dev111: 107–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Peery, H.E., Strohmeyer, R.W., Rogers, J. (2001). Cellular and molecular mechanisms of Alzheimer’s disease inflammation. In: Rogers, J. (eds) Neuroinflammatory Mechanisms in Alzheimer’s Disease Basic and Clinical Research. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8350-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8350-4_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9529-3

  • Online ISBN: 978-3-0348-8350-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics