Skip to main content

A General Construction for Fail-Stop Signature using Authentication Codes

  • Conference paper
Cryptography and Computational Number Theory

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 20))

Abstract

Security of an ordinary digital signature relies on a computational assumption. Fail-stop signature schemes provide security for a sender against a forger with unlimited computational power by enabling the sender to provide a proof of forgery, if it occurs. In this paper, we describe a method of constructing fail-stop signature schemes from authentication codes. We also give an example that fits this general construction and prove its security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Barić and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. Advances in Cryptology - Eurocrypt ‘87, Lecture Notes in Computer Science 1233, pages 480–494,1997.

    Article  Google Scholar 

  2. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable signatures, unconditionally secure for the signer. Interner Bericht, Fakultät für Informatik, 1/91,1990.

    Google Scholar 

  3. I. B. Damgård, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment schemes and fail-stop signatures. Journal of Cryptology, 10/3:163–194, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Diffie and M. Hellman. New directions in cryptography. IEEE IT, 22:644–654, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of Computing, 17/2:281–308, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Lamport. Constructing digital signatures from a one-way function. PSRI International CSL-98, 1979.

    Google Scholar 

  7. A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes in Commercial Applications. Price Waterhouse Coopers, CCE Quarterly Journal, 3, 3–9, 1999. Full version appears in http://www.cryptosavvy.com .

    Google Scholar 

  8. T. P. Pedersen and B. Pfitzmann. Fail-stop signatures. SIAM Journal on Computing, 26/2:291–330, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Pfitzmann. Fail-stop signatures: Principles and applications. Proc. Compsec ‘81, 8th world conference on computer security, audit and control,pages 125–134,1991.

    Google Scholar 

  10. B. Pfitzmann. Fail-stop signatures without trees. Hildesheimer Informatik-Berichte, Institut fur Informatik, 16/94, 1994.

    Google Scholar 

  11. B. Pfitzmann. Digital Signature Schemes - General Framework and Fail-Stop Signatures. Lecture Notes in Computer Science 1100, Springer-Verlag, 1996.

    MATH  Google Scholar 

  12. B. Pfitzmann and M. Waidner. Formal aspects of fail-stop signatures. Interner Bericht, Fakultät für Informatik, 22/90,1990.

    Google Scholar 

  13. W. Susilo, R. Safavi-Naini, M. Gysin, and J. Seberry. A New and Efficient Fail-Stop Signature Scheme. Manuscript, 2000.

    Google Scholar 

  14. E. van Heijst, T. Pedersen, and B. Pfitzmann. New constructions of fail-stop signatures and lower bounds. Advances in Cryptology - Crypto ‘82, Lecture Notes in Computer Science 740, pages 15–30,1993.

    Article  Google Scholar 

  15. E. van Heyst and T. Pedersen. How to make efficient fail-stop signatures. Advances in Cryptology - Eurocrypt ‘82, pages 337–346,1992.

    Google Scholar 

  16. M. Waidner and B. Pfitzmann. The dining cryptographers in the disco: Unconditional sender and recipient untraceability with computationally secure serviceability. Advances in Cryptology - Eurocrypt ‘89, Lecture Notes in Computer Science 434,1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Safavi-Naini, R., Susilo, W. (2001). A General Construction for Fail-Stop Signature using Authentication Codes. In: Lam, KY., Shparlinski, I., Wang, H., Xing, C. (eds) Cryptography and Computational Number Theory. Progress in Computer Science and Applied Logic, vol 20. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8295-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8295-8_25

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9507-1

  • Online ISBN: 978-3-0348-8295-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics