Skip to main content

Linear Independence of Jordan Chains

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 122))

Abstract

Jordan chains of holomorphic operator functions are studied. It is shown that a “semi-canonical” system of Jordan chains is a linearly independent system if each single nontrivial Jordan chain is a linearly independent system. With the help of local or global linearizations of the operator function it is characterized when nontrivial Jordan chains are linearly independent systems. This is applied to give necessary and sufficient conditions for the existence of roots and spectral roots of regular holomorphic matrix functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bart, Meromorphic Operator Valued Functions. Thesis. Vrije Universiteit, Amsterdam, 1973.

    MATH  Google Scholar 

  2. H. Bart, Poles of the Resolvent of an Operator Function. Proc. Roy. Irish Acad. 74A (1974), 169–184.

    MathSciNet  Google Scholar 

  3. H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Opera-tor Theory: Advances and Applications, vol. 15, Birkhauser: Basel-BostonStuttgart, 1985.

    Google Scholar 

  4. H. Bart, M.A. Kaashoek and D.C. Lay, Stability Properties of Finite Meromorphic Operator Functions. Proc. Acad. Sci. Amsterdam A77 (1974), 217–259.

    MathSciNet  Google Scholar 

  5. G.J. Butler, C.R. Johnson and H. Wolkowicz, Nonnegative Solutions of a Quadratic Matrix Equation Arising from Comparison Theorems in Ordinary Differential Equations. SIAM J. Alg. Disc. Meth. 6(1985), 47–53.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bart and D.C. Lay, Poles of a Generalized Resolvent Operator. Proc. Roy. Irish Acad. 74A (1974), 147–168.

    MathSciNet  Google Scholar 

  7. K.-H. Förster and B. Nagy, Some Properties of the Spectral Radius of a Monic Operator Polynomial with Nonnegative Compact Coefficients. Integral Equations and Operator Theory 14(1991), 794–805.

    Article  MathSciNet  MATH  Google Scholar 

  8. K.-H. Förster and B. Nagy, Spektraleigenschaften von Matrix-and Operatorpoly-nomen. Sitzungsberichte d. Berliner Math. Gesellschaft, 1994,243–262.

    Google Scholar 

  9. I. Gohberg, M.A. Kaashoek and D.C. Lay, Equivalence, Linearization, andDecomposition of Holomorphic Operator Functions. J. Funct. Anal. 28(1978),102–144.

    Article  MathSciNet  MATH  Google Scholar 

  10. I.Gohberg, M.A.Kaashoek and E van Schagen, On the Local Theory of RegularAnalytic Matrix Functions. Linear Algebra Appl. 182(1993), 9–25.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Gohberg, P. Lancaster and L. Rodman, Invariant Subspaces of Matrices with Applications. Wiley-Interscience: New York, 1986.

    MATH  Google Scholar 

  12. M.A. Kaashoek, State-space Theory of Rational Matrix Functions and Applica-tions, Lectures on Operator Theory and its Applications, Fields Institute Monographs vol. 3, Amer. Math. Soc., Providence, 1996,235–333.

    Google Scholar 

  13. P. Lancaster and P.N. Webber Jordan Chains and Lambda Matrices. Linear Alge-bra Appl. 1 (1968), 563–569.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Langer, Über Lancaster’s Zerlegung von Matritzen-Scharen. Archive Rat.Mech. Appl. 29 (1968), 75–80.

    MATH  Google Scholar 

  15. P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd. ed. AcademicPress: New York, 1985.

    MATH  Google Scholar 

  16. A.S. Marcus, Introduction to the Spectral Theory of Polynomial Operator Pencils.Translation of Mathematical Monograph, vol. 71, Amer. Math. Soc., Providence, 1988.

    Google Scholar 

  17. R.T. Rau, On the Peripheral Spectrum of a Monic Operator Polynomial withPositive Coefficients. Integral Equations and Operator Theory 15 (1992), 479–495.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Rodman, An Introduction to Operator Polynomials, Operator Theory:Advances and Applications, vol. 38. Birkhäuser: Basel-Boston-Berlin, 1989.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Förster, KH., Nagy, B. (2001). Linear Independence of Jordan Chains. In: Bart, H., Ran, A.C.M., Gohberg, I. (eds) Operator Theory and Analysis. Operator Theory: Advances and Applications, vol 122. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8283-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8283-5_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9502-6

  • Online ISBN: 978-3-0348-8283-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics