Skip to main content

Discretization methods for the Lavrent’ev regularization

  • Chapter
Problems and Methods in Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 121))

  • 391 Accesses

Abstract

In this paper we consider an ill-posed operator equation Lu = f in a Banach space X where L is a linear compact operator in X from itself and there exists a constant C > 0 such that \( \left\| {{{{(\rho + L)}}^{{ - 1}}}} \right\| \leqslant \tfrac{C}{{{{\rho }^{k}}}} \) for some kNand small p > 0. Let fδ be available data and polluted with noise level \( \delta > 0:\left\| {f - {{f}_{\delta }}} \right\| \leqslant \delta \)δ. For reconstruction of u from f δ , we adopt a discretization of the Lavrent’ev regularization: solve u p , δ , h in

$$ \rho u + {{P}_{h}}Lu = {{P}_{h}}{{f}_{\delta }} $$

where p > 0 is a parameter and {P h} h>0 is a family of projections used for the discretization with discretization parameter h. With suitable a-priori choice of p and h for δ, we will establish optimal convergence rates of u P , δ , h towards u as δ → 0. Furthermore we discuss a similar regularization in the case where f δ is replaced by discretely observated data f δ h . Finally we show that the Lavrent’ev regularization can suppress the condition numbers of the resulting discretized problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumeister, J., Stable Solutions of Inverse Problems. Vieweg, Braunschweig, 1987.

    Book  Google Scholar 

  2. Bruckner, G., Prössdorf, S. and Vainikko, G., Error bounds of discretization methods for boundary integral equations with noisy data. Applicable Analysis 63 (1996), 25–37.

    Article  MathSciNet  Google Scholar 

  3. Gerlach, W and von Wolfersdorf, L., On approximation computation of the values of the normal derivative of solutions to linear partial differential equations of second order with application to Abel’s integral equation. Zeitschrift für Angewandte Mathematik und Mechanik 66 (1986), 31–36.

    Article  MATH  Google Scholar 

  4. Gorenflo, R. and Vessella, S., Abel Integral Equations. Lecture Notes in Mathematics, 1461, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  5. Gorenflo, R. and Yamamoto, M., On regularized inversion of Abel integral operators. Proceedings of International Conference on Analysis and Mechanics of Continuous Media (HoChiMinh City, 27-29 December 1995) in honour of D.D. Ang, Publications of The HoChiMinh City Mathematical Society (1995), 162-182.

    Google Scholar 

  6. Gorenflo, R. and Yamamoto, M., A-priori strategy for regularizing parameters in the Lavrent’ev regularization. preprint.

    Google Scholar 

  7. Groetsch, C.W., The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, 1984.

    MATH  Google Scholar 

  8. Hofmann, B., Regularization for Applied Inverse and Ill-posed Problems. Teubner, Leipzig, 1986.

    MATH  Google Scholar 

  9. Hsiao, G.C. and Prössdorf, S., On the stability of the spline collocation method for a class of integral equatios of the first kind. Applicable Analysis 30 (1988), 249–261.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsiao, G.C. and Wendland, W.L., A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977), 449–481.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kato, T., Perturbation Theory for Linear Operators, (second edition) Springer-Verlag, Berlin, 1976.

    Book  MATH  Google Scholar 

  12. Kress, R., Linear Integral Equations, (second edition) Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  13. Lavrent’ev, M.M., Romanov, V.G. and Shishatskiĭ, S.P., Ill-posed Problems of Mathematical Physics and Analysis. American Mathematical Society, Providence, Rhode Island, English translation, 1986.

    Google Scholar 

  14. Natterer, F., Error bounds for Tikhonov regularization in Hilbert scales. Applicable Analysis 18 (1984), 25–37.

    Article  MathSciNet  Google Scholar 

  15. Plato, R., The Galerkin scheme for Lavrentiev’s m-times iterated method to solve linear accretive Volterra integral equations of the first kind. BIT 37 (1997), 404–423.

    Article  MathSciNet  MATH  Google Scholar 

  16. Plato, R., Resolvent estimates for Abel integral operators and the regularization of associated first kind integral equations. J. Integral Equations and Appl. 9 (1997), 253–278.

    Article  MathSciNet  MATH  Google Scholar 

  17. Prössdorf, S. and Silbermann, B., Numerical Analysis for Integral and Related Operator Equations. Akademie-Verlag, Birkhäuser-Verlag, Basel, Berlin, 1991.

    Google Scholar 

  18. Tanabe, H., Equations of Evolution. Pitman, London, 1979.

    MATH  Google Scholar 

  19. Tikhonov, A.N. and Arsenin, V.Y., Solutions of Ill-posed Problems. (English translation) John Wiley & Sons, New York, 1977.

    MATH  Google Scholar 

  20. Wing, G.M., Condition numbers of matrices arising from the numerical solution of linear integral equations of the first kind. J. Integral Equations 9(Suppl.) (1985), 191–204.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Prössdorf, S., Yamamoto, M. (2001). Discretization methods for the Lavrent’ev regularization. In: Elschner, J., Gohberg, I., Silbermann, B. (eds) Problems and Methods in Mathematical Physics. Operator Theory: Advances and Applications, vol 121. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8276-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8276-7_23

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9500-2

  • Online ISBN: 978-3-0348-8276-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics