Advertisement

Kronecker Type Convolution of Function Vectors with one Refinable Factor

  • Costanza Conti
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 137)

Abstract

The aim of this paper is the further investigation of some of the properties being preserved when convolving two function vectors. This work follows the investigations in [6] of convolved refinable function vectors i.e.,function vectors which are solutions of matrix refinement equations. Here, going further, we consider also the case where only one factor of the convolution is refinable showing how the properties of the unique refinable vector can be still used to define a subdivision-like algorithm.

Keywords

Function Vector Subdivision Scheme Refinable Function Matrix Sequence Shift Invariant Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Cavaretta, W. Dahmen, C. A. Micchelli: Stationary Subdivision,Memoirs Amer. Math. Soc. 93, no. 453, Providence, RI, 1991.MathSciNetGoogle Scholar
  2. [2]
    M. Charina, C. Conti, K. Jetter: Image data compression with three-directional splines, in: Proceedings of the SPIE conference ‘Wavelets Application in Signal and Image Processing VIII’, A. Aldroubi, A. F. Laine, M. Unser (eds.), San Diego, to appear (2000).Google Scholar
  3. [3]
    C. K. Chui: Multivariate Splines,CBMS-NSF Series Applied Math. 54, Soc. Ind. Appl. Math., Philadelphia 1988.CrossRefGoogle Scholar
  4. [4]
    A. Cohen, N. Dyn, D. Levin: Stability and inter-dependence of matrix subdivision schemes, in: Advanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter, P. J. Laurent (eds.), World Scientific, Singapore 1996, pp. 33–45.Google Scholar
  5. [5]
    C. Conti, K. Jetter: A new subdivision method for bivariate splines on the four-directional mesh, J. Comp. Applied Math. 119 (2000), 81–96.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    C. Conti, K. Jetter: A note on convolving refinable function vectors,in: Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, L. L. Schumaker (eds.), Vanderbilt University Press, Nashville 2000, pp. 135–142.Google Scholar
  7. [7]
    C. Conti: Convergence of Convolved Vector Subdivision Schemes, Technical Report, 2000.Google Scholar
  8. [8]
    S. Dahlke, W. Dahmen, V. Latour: Smooth refinable functions and wavelets obtained by convolution products, Appl. Comp. Harm. Anal. 2 (1995), 68–84.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    W. Dahmen, C. A. Micchelli: Biorthogonal wavelet expansion,Contruct. Approx. 13 (1997), 293–328.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    N. Dyn: Subdivision schemes in computer-aided geometric design, in: Advances in Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions, W. Light (ed.), Clarendon Press, Oxford 1992, pp. 36–104.Google Scholar
  11. [11]
    X. Guillet: Interpolation by new families of B-splines on uniform meshes of the plane, in: Surface Fitting and Multiresolution Methods, A. Le Méhauté, C. Rabut, L. L. Schumaker (eds.), World Scientific, Singapore 1997, pp. 183–190.Google Scholar
  12. [12]
    R. Q. Jia, S. Riemenschneider, D. X. Zhou: Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998), 1533–1563.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    C. A. Micchelli, T. Sauer: On Vector Subdivision, Math. Z., to appear.Google Scholar
  14. [14]
    S. D. Riemenschneider, Z.-W. Shen, Box splines,cardinal series, and wavelets, in: Approximation Theory and Functional Analysis, C. K. Chui (ed.), Academic Press, San Diego 1991, pp. 133–149.Google Scholar
  15. [15]
    P. Sablonnière: B-splines on uniform meshes of the plane, in: Advanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter, P. J. Laurent (eds.), World Scientific, Singapore 1996, pp. 323–337.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Costanza Conti
    • 1
  1. 1.Dipartimento di EnergeticaUniversitä di FirenzeFirenzeItaly

Personalised recommendations