Geometric Methods in Complex Analysis

  • Stefan Nemirovski
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)


The talk surveys the applications of geometric topology to complex analysis in several complex variables.


Holomorphic Function Real Surface Morse Theory Pseudoconvex Domain Stein Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Andreotti and R. Narasimhan, A topological property of Runge pairs, Ann. of Math. (2) 76 (1962), 499–509.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D. Bennequin, Entrelacements et equation de Pfaff, Asterisque 107 (1983), 87–161.MathSciNetGoogle Scholar
  3. [3]
    E. Bedford and W. Klingenberg, On the envelope of holomorphy of a 2-sphere in C2, J. Am. Math. Soc. 4 (1991), 623–646.MathSciNetzbMATHGoogle Scholar
  4. [4]
    E. M. Chirka, The generalized Hartogs lemma and the non-linear ó-equation, in: Complex analysis in contemporary mathematics (dedicated to the memory of B. Sha-bat), Fasis, Moscow, 1998, pp. 19–30.Google Scholar
  5. [5]
    J. Duval and N. Sibony, Polynomial convexity, rational convexity,and currents, Duke Math. J. 79 (1995), 487–513.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Ya. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Int. J. Math. 1 (1990), 29–46.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    J. E. Fornaess and D. Ma, A 2-sphere in C2 that cannot be filled in with analytic discs, Int. Math. Res. Notices 1 (1995), 17–22.MathSciNetCrossRefGoogle Scholar
  8. [8]
    F. ForstnericComplex tangents of real surfaces in complex surfaces, Duke Math. J. 67 (1992), 353–376.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    R. Fujita, Domaines sans point critique intérieur sur l’espace projectif complexe, J. Math. Soc. Japan 15 (1963), 443–473.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    R. E. Gompf, Handlebody construction of Stein surfaces,Ann. of Math. (2) 148 (1998), 619–693.Google Scholar
  11. [11]
    S. Ivashkovich and V. Shevchishin, Structure of the moduli space in the neighbourhood of a cusp curve and meromorphic hulls, Invent. Math. 136 (1999), 571–602.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    P. B. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808.MathSciNetzbMATHGoogle Scholar
  13. [13]
    N. G. Kruzhilin, Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in C 2, Izv. Acad. Nauk SSSR Ser. Mat. 55 (1991), 1194–1237; English transi. in Math. USSR Izv. 39 (1992), 1151–1187.MathSciNetCrossRefGoogle Scholar
  14. [14]
    P. Lisca and G. Matie, Stein 4-manifolds with boundary and contact structures, Topology Appl. 88 (1998), 55–66.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J. W. Morgan, Z. Szabó and C. H. Taubes, A product formula for Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996), 706–788.MathSciNetzbMATHGoogle Scholar
  16. [16]
    S. Nemirovski, Holomorphic functions and embedded real surfaces, Mat. Zametki 63 (1998), 599–606; English transi. in Math. Notes 63 (1998), 527–532.CrossRefGoogle Scholar
  17. [17]
    S. Nemirovski, Complex analysis and differential topology on complex surfaces, Uspekhi Mat. Nauk 54:4 (1999), 47–74; English transi. in Russ. Math. Surveys 54:4 (1999), 729–752.MathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Nemirovski, in preparation.Google Scholar
  19. [19]
    P. Ozsváth and Z. Szabó, The symplectic Thom conjecture, Ann. of Math. (2) 151 (2000), 93–124.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    J. P. Rosay, A counterexample related to Hartogs’ phenomenon (a question by E. Chirka), Michigan Math. J. 45 (1998), 529–535.MathSciNetzbMATHGoogle Scholar
  21. [21]
    E. L. Stout, Algebraic domains in Stein manifolds, in: Banach Algebras and Several Complex Variables, Proc. Conf. New Haven/Conn. 1983, Contemp. Math. 32 (1984), 259–266.Google Scholar
  22. [22]
    A. G. Vitushkin, Description of the homology of a ramified covering of C 2,Mat. Zametki 64 (1998), 839–846; English transi. in Math. Notes 64 (1998), no. 6.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Stefan Nemirovski
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscow GSP-1Russia

Personalised recommendations