Topological Quantum Field Theory and Four-Manifolds

  • Marcos Mariño
Part of the Progress in Mathematics book series (PM, volume 202)


I review some recent results on four-manifold invariants which have been obtained in the context of topological quantum field theory. I focus on three different aspects: (a) the computation of correlation functions, which give explicit results for the Donaldson invariants of non-simply connected manifolds, and for generalizations of these invariants to the gauge groupSU(N);(b) compactifications to lower dimensions, and connections to three-manifold topology and to intersection theory on the moduli space of flat connections on Riemann surfaces; (c) four-dimensional theories with critical behaviour, which give some remarkable constraints on Seiberg-Witten invariants and new results on the geography of four-manifolds.


Modulus Space Gauge Group Intersection Pairing Modular Form Supersymmetric Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Argyres, M. R. Plesser, N. Seiberg and E. Witten, “NewN =2 superconformal field theories in four dimensions,” hep-th/9511114, Nucl. Phys. B 461 (1996) 71.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    S. K. Donaldson and P.B. KronheimerThe geometry of four-manifoldsOxford University Press, 1990.Google Scholar
  3. 3.
    J. D. Edelstein and J. Mas, “Strong-coupling expansion and Seiberg-WittenWhitham equations,” hep-th/9901006, Phys. Lett. B 452 (1999) 69.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P. M. N. Feehan, P. B. Kronheimer, T. G. Lenness, and T. Mrowka“PU(2)monopoles and a conjecture of Mariño, Moore and Peradze,” math.DG/9812125, Math. Res. Letters 6 (1999) 169.zbMATHGoogle Scholar
  5. 5.
    L. Göttsche, “Modular forms and Donaldson invariants for 4-manifolds withb + =1,“ alg-geom/9506018; J. Am. Math. Soc. 9 (1996) 827. L. Göttsche and D. Zagier, ”Jacobi forms and the structure of Donaldson invariants for 4-manifolds withb + =1,“ alg-geom/9612020, Selecta. Math. (N.S.) 4 (1998) 69.zbMATHCrossRefGoogle Scholar
  6. 6.
    N. Habegger and G. Thompson, “The universal perturbative quantum three-manifold invariant, Rozansky-Witten invariants and the generalized Casson invariant,” math.DG/9911049.Google Scholar
  7. 7.
    C. Lozano and M. Mariño, “Donaldson invariants of product ruled surfaces and two-dimensional gauge theories,” hep-th/9907165, to appear in Commun. Math. Phys.Google Scholar
  8. 8.
    A. Losev, N. Nekrasov, and S. Shatashvili, “Issues in topological gauge theory,” hep-th/9711108, Nucl. Phys. B 549 (1998); “Testing Seiberg-Witten solution,” hepth/9801061.Google Scholar
  9. 9.
    M. Mariño, “The geometry of supersymmetric gauge theories in four dimensions,” hep-th/9701128.Google Scholar
  10. 10.
    M. Mariño and G. Moore, “The Donaldson-Witten function for gauge groups of rank larger than one,” hep-th/9802185, Commun. Math. Phys. 199 (1998) 25.zbMATHCrossRefGoogle Scholar
  11. 11.
    M. Mariño and G. Moore, “Donaldson invariants for non-simply connected manifolds,” hep-th/9804114, Commun. Math. Phys. 203 (1999) 249.zbMATHCrossRefGoogle Scholar
  12. 12.
    M. Mariño and G. Moore, “Three-manifold topology and the Donaldson-Witten partition function,” Hep-th/9811214, Nucl. Phys. B 547 (1999) 569.zbMATHCrossRefGoogle Scholar
  13. 13.
    M. Mariño, G. Moore and G. Peradze, “Superconformal invariance and the geography of four-manifolds,” hep-th/9812055, Commun. Math. Physics. 205 (1999) 691; “Four-manifold geography and superconformal symmetry,” math.DG/9812042, Math. Res. Lett. 6 (1999) 429.zbMATHGoogle Scholar
  14. 14.
    G. Meng and C. H. Taubes“SW=Milnor torsion,” Math. Res. Lett. 3 (1996) 661.MathSciNetzbMATHGoogle Scholar
  15. 15.
    G. Moore and E. Witten, “Integration over the u-plane in Donaldson theory,” hepth/9709193, Adv. Theor. Math. Phys. 1 (1997) 298.MathSciNetzbMATHGoogle Scholar
  16. 16.
    L. Rozansky and E. Witten, “HyperKähler geometry and invariants of three-manifolds,” hep-th/9612216, Selecta. Math. (N.S.) 3 (1997) 401.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement inN =2 supersymmetric Yang-Mills theory,” hep-th/9407087, Nucl. Phys. B 426 (1994) 19. “Monopoles, duality and chiral symmetry breaking inN =2 supersymmetric QCD,” hep-th/9408099, Nucl. Phys. B 431 (1994) 484.MathSciNetzbMATHGoogle Scholar
  18. 18.
    M. Thaddeus, “Conformal field theory and the cohomology of the moduli space of stable bundles,” J. Diff. Geom.35(1992) 131.MathSciNetzbMATHGoogle Scholar
  19. 19.
    E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys.117(1988) 353.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    E. Witten, “Monopoles and four-manifolds,” hep-th/9411102; Math. Res. Letters1(1994) 769.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Marcos Mariño
    • 1
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations