Banach KK-Theory and the Baum-Connes Conjecture

  • Vincent Lafforgue
Part of the Progress in Mathematics book series (PM, volume 202)


The report below describes the applications of Banach KK-theory to a conjecture of P. Baum and A. Connes about the K-theory of group C*-algebras.


Unitary Representation Banach Algebra Hilbert Module Fredholm Representation Left Regular Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Baum and A. ConnesK-theory for Lie groups and foliations, Preprint, (1982).Google Scholar
  2. [2]
    P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, C*-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc. (1994), 240–291.MathSciNetGoogle Scholar
  3. [3]
    P. Baum, N. Higson and R. Plymen, A proof of the Baum-Connes conjecture for p-adic GL(n),C. R. Acad. Sci. Paris Sér. I, 325, (1997), 171–176.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J.-B. Bost, Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs, Invent. Math., 101, (1990), 261–333.MathSciNetzbMATHGoogle Scholar
  5. [5]
    J. ChabertBaum-Connes conjecture for some semi-direct products, J. Reine Angew. Math., 521, (2000), 161–184.MathSciNetzbMATHGoogle Scholar
  6. [6]
    J. Chabert and S. Echterhoff, Permanence properties of the Baume-Connes conjecture,Documenta Math. 6, (2001), 127–183.MathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Connes, Non-commutative geometry, Academic Press, (1994).Google Scholar
  8. [8]
    J. Cuntz, K-theoretic amenability for discrete groups,J. Reine Angew. Math., 344, (1983), 180–195.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J. Cuntz, Bivariante K-theorie für lokalconvexe Algebren und der Chern-Connes Character, Doc. Math., 2, (1997), 139–182.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Novikov conjectures, Index theorems and Rigidity, Edited by S. Ferry, A. Ranicki and J. Rosenberg, Volume 1, London Mathematical Society, LNS 226, (1993).Google Scholar
  11. [11]
    M. Gromov, Spaces and questions, Preprint (1999).Google Scholar
  12. [12]
    U. Haagerup, An example of a nonnuclear C* -algebra which has the metric approximation property, Inv. Math., 50, (1979), 279–293.MathSciNetzbMATHGoogle Scholar
  13. [13]
    P. de la Harpe, Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolis-saint, C. R. Acad. Sci. Paris Sér. I, 307, (1988), 771–774.zbMATHGoogle Scholar
  14. [14]
    P. de la Harpe and A. ValetteLa propriété (T) de Kazdhan pour les groupes localement compacts, Astérisque, (1989).Google Scholar
  15. [15]
    N. Higson and G. KasparovOperator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc., 3, (1997), 131–142.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    N. Higson, The Baum-Connes conjecture,Proc. of the Int. Cong. of Math., Vol. II (Berlin, 1998), Doc. Math., (1998), 637–646.Google Scholar
  17. [17]
    N. Higson, Bivariant K-theory and the Novikov conjecture, Preprint, (1999).Google Scholar
  18. [18]
    P. Jolissaint, Rapidly decreasing functions in reduced C* -algebra of groups, Trans. Amer. Math. Soc., 317, (1990), 167–196.MathSciNetzbMATHGoogle Scholar
  19. [19]
    P. Julg and A. Valette, K-theoretic amenability for SL 2 (Q z,),and the action on the associated tree, J. Funct. Anal, 58, (1984), 194–215.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    P. Julg and G. KasparovOperator K-theory for the group SU(n, 1), J. Reine Angew. Math., 463 (1995), 99–152.MathSciNetzbMATHGoogle Scholar
  21. [21]
    P. Julg Remarks on the Baum-Connes conjecture and Kazhdan’s property T, Operator algebras and their applications, Waterloo (1994/1995), Fields Inst. Commun., Amer. Math. Soc., 13 (1997), 145–153.MathSciNetGoogle Scholar
  22. [22]
    P. Julg, Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes,Séminaire Bourbaki. Vol. 1997/98, Astérisque, 252 (1998), No. 841, 4, 151–183.Google Scholar
  23. [23]
    G. G. Kasparov, Topological invariants of elliptic operators. I. K-homology, Izv. Akad. Nauk SSSR Ser. Mat., 39 no. 4, (1975), 796–838.MathSciNetzbMATHGoogle Scholar
  24. [24]
    G. G. Kasparov, The operator K-functor and extensions of C* -algebras, Math. USSR Izv., 16 (1980), 513–572.CrossRefGoogle Scholar
  25. [25]
    G. G. Kasparov, Operator K-theory and its applications: elliptic operators, group representations, higher signatures,Cam-extensions, Proc. of the Int. Cong. of Math., (Warsaw, 1983), 987–1000.Google Scholar
  26. [26]
    G. G. Kasparov, K-theory, group C* -algebras, and higher signatures (conspectus), Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 101–146, London Math. Soc. LNS 226, (1981).Google Scholar
  27. [27]
    G. G. Kasparov, Lorentz groups: K-theory of unitary representations and crossed products, Dokl. Akad. Nauk SSSR, 275 (1984), 541–545.MathSciNetGoogle Scholar
  28. [28]
    G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91 (1988), 147–201.MathSciNetzbMATHGoogle Scholar
  29. [29]
    G. G. Kasparov and G. Skandalis, Groups acting on buildings,operator K-theory, and Novikov’s conjecture, K-Theory, 4 (1991), 303–337.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    G. Kasparov and G. Skandalis, Groupes boliques et conjecture de Novikov Comptes Rendus Acad. Sc., 319 (1994), 815–820.MathSciNetzbMATHGoogle Scholar
  31. [31]
    V. Lafforgue, Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T), C. R. Acad. Sci. Paris Sér. I, 327 (1998), 439–444.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    V. Lafforgue Compléments à la démonstration de la conjecture de Baum-Connes pour certains groupes possédant la propriété (T), C. R. Acad. Sci. Paris Sér. I, 328 (1999), 203–208.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    V. Lafforgue KK-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Thèse de Doctorat de l’université Paris 11 (mars 1999).Google Scholar
  34. [34]
    V. Lafforgue, A proof of property (RD) for cocompact lattices in SL 3 (I“.) and SL 3 (C), Journal of Lie Theory 10, (2000), 255–267.MathSciNetzbMATHGoogle Scholar
  35. [35]
    P.-Y. Le Gall, Théorie de Kasparov équivariante et groupoïdes, C. R. Acad. Sci. Paris Sér. I, 324 (1997), 695–698.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    P.-Y. Le Gall, Théorie de Kasparov équivariante et groupoïdes. I, K-Theory, 16 (1999), 361–390.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    A. S. Mishchenko, Homotopy invariants of multiply connected manifolds. I. Rational invariants, Math. USSR Izv., 4 (1970), 509–519, translated from Izv. Akad. Nauk SSSR Ser. Mat., 34, (1970), 501–514.zbMATHGoogle Scholar
  38. [38]
    A. S. Mishchenko, Infinite-dimensional representations of discrete groups,and higher signatures, Math. USSR Izv., 8 no. 1, (1974), 85–111.CrossRefGoogle Scholar
  39. [39]
    H. Oyono-Oyono, La conjecture de Baum—Connes pour les groupes agissant sur les arbres, C. R. Acad. Sci. Paris Sér. I Math., 326, (1998), 799–804.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    H. Oyono-Oyono, Baum—Connes conjecture and group actions on trees, Preprint.Google Scholar
  41. [41]
    M. V. Pimsner, KK-groups of crossed products by groups acting on trees, Invent. Math., 86, (1986), 603–634.MathSciNetzbMATHGoogle Scholar
  42. [42]
    J. Ramagge, G. Robertson and T. Steger, A Haagerup inequality for A l x A l and A2 buildings, Geom. Funct. Anal., 8, (1998), 702–731.MathSciNetzbMATHGoogle Scholar
  43. [43]
    G. Skandalis, Kasporov’s bivariant K-theory and applications, Expositiones Math., 9 (1991), 193–250.MathSciNetzbMATHGoogle Scholar
  44. [44]
    G. Skandalis, Progrès récents sur la conjecture de Baum—Connes, contribution de Vincent Lafforgue, Séminaire Bourbaki, No. 869 (novembre 1999).Google Scholar
  45. [45]
    J.-L. Tu, The Baum—Connes conjecture and discrete group actions on trees, K-Theory, 17 (1999), 303–318.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    J.-L. Tu, La conjecture de Baum—Connes pour les feuilletages moyennables, K-Theory, 17 (1999), 215–264.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    J.-L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory, 16 (1999), 129–184.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    A. Valette, Introduction to the Baum—Connes conjecture, to appear in the Series “Lectures in Mathematics — ETH Zürich”, Birkhäuser.Google Scholar
  49. [49]
    A. Wassermann, Une démonstration de la conjecture de Connes—Kasparov pour les groupes de Lie linéaires connexes réductifs, C. R. Acad. Sci. Paris Sér. I, 304, (1987), 559–562.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Vincent Lafforgue
    • 1
  1. 1.Institut de Mathématiques de JussieuParisFrance

Personalised recommendations