D-Branes on Calabi-Yau Manifolds

  • Michael R. Douglas
Part of the Progress in Mathematics book series (PM, volume 202)


We give an overview of recent work on Dirichlet branes on CalabiYau threefolds which makes contact with Kontsevich’s homological mirror symmetry proposal, proposes a new definition of stability which is appropriate in string theory, and provides concrete quiver categories equivalent to certain categories of branes on CY.


Modulus Space Marginal Stability Conformal Field Theory Coherent Sheave Nonlinear Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. BeilinsonCoherent sheaves on P f and problems of linear algebra, Funct. Anal. Appl.12(1978) 214–216.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. A. Beilinson, Bernstein and P. DeligneFaiseaux PerversAsterisque 100 (1982).Google Scholar
  3. 3.
    T. Bridgeland, A. King, and M. ReidMukai implies McKaymath.AG/9908027.Google Scholar
  4. 4.
    I. Brunner, M. R. Douglas, A. Lawrence, and C. RömelsbergerD-braves on the quinticto appear in J. High Energy Physics, hep-th/9906200.Google Scholar
  5. 5.
    P. Candelas, X. de la Ossa, A. Font, S. Katz, and D. R. MorrisonMirror symmetry for two parameter models - INucl. Phys. B416 (1994) 481, hep-th/9308083.Google Scholar
  6. 6.
    P. Candelas, X. C. de la Ossa, P. S. Green, and L. ParkesA pair of Calabi-Yau manifolds as an exactly soluble superconformal theoryNucl. Phys. B359 (1991) 21.MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. A. Cox and S. KatzMirror Symmetry and Algebraic GeometryMathematical Surveys 68 1999, AMS.Google Scholar
  8. 8.
    J. Dai, R. G. Leigh andJ.PolchinskiNew Connections Between String TheoriesMod. Phys. Lett.A42073 (1989).MathSciNetGoogle Scholar
  9. 9.
    R. DijkgraafFields Strings and Dualityin Les Houches LXIV,Symetries Quantiqueseds. A. Connes, K. Gawedzki and J. Zinn-Justin, Elsevier (1998).Google Scholar
  10. 10.
    S. Donaldson and R. Thomas, Gauge Theory in Higher Dimensions, in The Geometric Universe; Science, Geometry, and the Work of Roger Penrose, Oxford University Press, 1998.Google Scholar
  11. 11.
    M. R. Douglas and G. MooreD-branes Quivers and ALE Instantons hepth/9603167.Google Scholar
  12. 12.
    M. R. Douglas, B. R. Greene, and D. R. MorrisonOrbifold resolution by D-branesNucl. Phys. B506 (1997) 84, hep-th/9704151.Google Scholar
  13. 13.
    M. R. Douglas and B. R. GreeneMetrics on D-brave orbifoldsAdv. Theor. Math. Phys. 1 184 (1998) hep-th/9707214.Google Scholar
  14. 14.
    M. R. DouglasTwo Lectures on D-Geometry and Noncommutative Geometryin Nonperturbative Aspects of Strings Branes and SupersymmetryWorld Scientific (1999), hep-th/9901146.Google Scholar
  15. 15.
    M. R. DouglasTopics in D-geometryClass. Quant. Gray. 17 (2000) 1057, hepth/9910170.Google Scholar
  16. 16.
    M. R. Douglas, B. Fiol, and C. RömelsbergerStability and BPS braneshepth/0002037.Google Scholar
  17. 17.
    M. R. Douglas, B. Fiol, and C. RömelsbergerThe spectrum of BPS branes on a noncompact Calabi-Yau hep-th/0003263. Google Scholar
  18. 18.
    M. R. Douglas and D.-E. DiaconescuD-branes on Stringy Calabi-Yau Manifolds hep-th/0006224. Google Scholar
  19. 19.
    M. R. DouglasD-branes Categories and N =1 Supersymmetry to appear.Google Scholar
  20. 20.
    ] M. R. Douglas and D.-E. Diaconescu, to appear.Google Scholar
  21. 21.
    B. Fiol and M. MarinoBPS states and algebras from quiversJHEP 0007 (2000) 031, hep-th/0006189.Google Scholar
  22. 22.
    R. Gopakumar and C. VafaM-Theory and Topological Strings-Ihep-th/9809187.Google Scholar
  23. 23.
    S. Govindarajan, T. Jayaraman, and T. SarkarWorld sheet approaches to D-branes on supersymmetric cycles hep-th/9907131. Google Scholar
  24. 24.
    B. R. GreeneString theory on Calabi-Yau manifolds hep-th/9702155. Google Scholar
  25. 25.
    B. R. Greene and M. R. PlesserDuality in Calabi-Yau Moduli Space, Nucl. Phys.B338 (1990) 15.MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. T. Grisaru, A. E. van de Ven and D. ZanonTwo-Dimensional Supersymmetric Sigma Models On Ricci-Flat Kahler Manifolds Are Not Finite, Nucl. Phys.B277 (1986), 388.MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. GrossTopological Mirror Symmetrymath.AG/9909015.Google Scholar
  28. 28.
    F. Reese HarveySpinors and CalibrationsAcademic Press (1990).Google Scholar
  29. 29.
    J.A. Harvey and G. MooreOn the algebras of BPS statesComm. Math. Phys. 197 489 (1998), hep-th/9609017.Google Scholar
  30. 30.
    K. Hori, A. Iqbal, and C. VafaD-braves and mirror symmetryhep-th/0005247.Google Scholar
  31. 31.
    R. P. HorjaHypergeometric functions and mirror symmetry in toric varietiesmath.AG/9912109.Google Scholar
  32. 32.
    Y. Ito and H. NakajimaMcKay correspondence and Hilbert schemes in dimension threemath.AG/9803120.Google Scholar
  33. 33.
    I.Jack, D. R. Jones and J. Panvel, Six loop divergences in the supersymmetric Kahler sigma model, Int. J. Mod. Phys. A82591 (1993); hep-th/9311117.Google Scholar
  34. 34.
    D. JoyceOn counting special Lagrangian homology 3-sphereshep-th/9907013.Google Scholar
  35. 35.
    S. Kachru, S. Katz, A. Lawrence and J. McGreevyMirror Symmetry for Open Stringshep-th/0006047.Google Scholar
  36. 36.
    M. KontsevichHomological Algebra of Mirror SymmetryProceedings of the 1994 ICM, alg-geom/9411018.Google Scholar
  37. 37.
    P. B. KronheimerThe construction of ALE spaces as hyper-Kähler quotientsJ. Diff. Geom. 29 (1989) 665.MathSciNetzbMATHGoogle Scholar
  38. 38.
    N. C. LeungEinstein Type Metrics and Stability on Vector BundlesJ. Diff. Geom.45 (1997) 514.zbMATHGoogle Scholar
  39. 39.
    N. C. Leung, S.-T. Yau and E. ZaslowFrom Special Lagrangian to Hermitian-YangMills via Fourier-Mukai Transformmath.DG/0005118.Google Scholar
  40. 40.
    M. Marino, R. Minasian, G. Moore and A. StromingerNonlinear Instantons from Supersymmetric p-BranesJHEP 0001 (2000) 005, hep-th/9911206.Google Scholar
  41. 41.
    D. R. MorrisonGeometric Aspects of Mirror Symmetrymath.AG/0007090.Google Scholar
  42. 42.
    K.S. Narain, M.H. Sarmadi and C. Vafa(Harvard U.),Asymmetric orbifoldsNucl. Phys. B288 (1987), 551.MathSciNetCrossRefGoogle Scholar
  43. 43.
    D. Nemeschansky and A. SenConformal Invariance Of Supersymmetric Sigma Models On Calabi-Yau Manifolds Phys. Lett. B178 (1986), 365.MathSciNetGoogle Scholar
  44. 44.
    H. Ooguri, Y. Oz and Z. YinD-branes on Calabi-Yau spaces and their mirrorsNucl. Phys. B477 407 (1996), hep-th/9606112.Google Scholar
  45. 45.
    J. PolchinskiTASI Lectures on D-braneshep-th/9611050.Google Scholar
  46. 46.
    A. Polishchuk and E. ZaslowCategorical Mirror Symmetry: The Elliptic CurveAdv. Theor. Math. Phys. 2 (1998) 443–470, math.AG/9801119.Google Scholar
  47. 47.
    A. Recknagel and V. SchomerusD-branes in Gepner modelsNucl. Phys. B531 (1998) 185, hep-th/9712186.Google Scholar
  48. 48.
    M. ReidLa correspondance de McKaySé;minaire Bourbaki (novembre 1999), no. 867, math.AG/9911165.Google Scholar
  49. 49.
    W.-D. RuanLagrangian torus fibration and mirror symmetry of Calabi-Yau hyper-surface in toric varietymath.DG/0007028.Google Scholar
  50. 50.
    P. SeidelGraded Lagrangian submanifoldsmath.SG/9903049.Google Scholar
  51. 51.
    P. Seidel and R. P. ThomasBraid group actions on derived categories of coherent sheavesmath.AG/0001043.Google Scholar
  52. 52.
    A. Strominger, S.-T. Yau and E. ZaslowMirror Symmetry is T-DualityNucl.Phys. B479 (1996) 243–259, hep-th/9606040.466 M. R. DouglasGoogle Scholar
  53. 53.
    R. P. ThomasD-Branes and Mirror Symmetryto appear in the proceedings of the 2000 Clay Mathematics Institute school on Mirror Symmetry.Google Scholar
  54. 54.
    R. P. Thomas, to appear.Google Scholar
  55. 55.
    C. Voisin Mirror Symmetry, SMF/AMS Texts 1, AMS 1999.Google Scholar
  56. 56.
    E. WittenPhases of N=2 theories in two dimensionsNucl. Phys. B403 (1993) 159, hep-th/9301042.Google Scholar
  57. 57.
    E. WittenChern-Simons gauge theory as a string theoryhep-th/9207094.Google Scholar
  58. 58.
    E. WittenBranes and the Dynamics of QCDNucl. Phys. B507 (1997) 658; hepth/9706109.Google Scholar
  59. 59.
    [] I. ZharkovTorus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetrymath.AG/9806091.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Michael R. Douglas
    • 1
    • 2
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  2. 2.I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations