Semiclassical Results in the Linear Response Theory

  • Monique Combescure
  • Didier Robert
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)


We consider a quantum system of non-interacting fermions at temperatureTin the framework of linear-response theory. We show that semiclassical theory is an appropriate framework for describing some of their thermodynamic properties, in particular through exact expansions inh (Planck constant) of their dynamical susceptibilities. We show how the orbits of the classical motion in phase space manifest themselves in these expansions, in the regime whereT is of orderh.


Linear Response Theory Kubo Formula Nonequilibrium Statistical Mechanic Weyl Quantization Semiclassical Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. AgamThe magnetic response of chaotic mesoscopic systemsJ. Phys. I (France), 4 (1994), 697–730.CrossRefGoogle Scholar
  2. 2.
    M. Aizenman and G. M. GrafLocalization bounds for an electron gasJ. Phys. A (Math. and Gen.), 31 (1998), 6783–6806.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. BerrySome quantum-to-classical asymptoticsin Chaos et Physique Quantique, Les Houches (1989) M. J. Giannoni, A. Voros and J. Zin-Justin, North Holland.Google Scholar
  4. 4.
    J. D. Butler, Semiclassical counting function with application to quantum current, Orsay preprint (1999).Google Scholar
  5. 5.
    M. Combescure and D. RobertSemiclassical results in linear response theory(in preparation).Google Scholar
  6. 6.
    M. Combescure, J. Ralston and D. Robert, Aproof of the Gutzwiller semiclassical trace formula using coherent states decompositionCommun. Math. Phys., 202 (1999), 463–480.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Combescure and D. Robert, Rigorous semiclassical results for the magnetic response of an electron gas, Orsay preprint (2000).Google Scholar
  8. 8.
    Y. EgorovOn canonical transformations of pseudodifferential operatorsUspehi Mat. Nauk, 25 (1969), 235–236.Google Scholar
  9. 9.
    S. FournaisSemiclassics of the quantum currentCommun. in PDE, 23 (1998), 601–628.MathSciNetzbMATHGoogle Scholar
  10. 10.
    G. Gallavotti and E. G. CohenDynamical ensembles in stationary states,J. Stat. Phys., 80 (1995), 931–970.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Gallavotti and D. RuelleSRB states and nonequilibrium statistical mechanics close to equilibriumCommun. Math. Phys., 190 (1997), 279–285.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    P. Gaspard and S. JainSemiclassical theory for many-body fermionic systemsPramana Journal of Physics, 48 (1997), 503–516.CrossRefGoogle Scholar
  13. 13.
    R. Kubo, M. Toda and N. HashitsumeStatistical Physics II(Nonequilibrium Statistical Mechanics), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1978).Google Scholar
  14. 14.
    L. D. Landau and E. M. LifshitzStatistical PhysicsCourse of Theoretical Physics, vol. 5, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt (1980).Google Scholar
  15. 15.
    B. Mehlig and K. RichterSemiclassical linear response: far-infrared absorption in ballistic quantum systemsPhys. Rev. Lett., 80 (1998), 1936–1939.CrossRefGoogle Scholar
  16. 16.
    K. Richter, D. Ullmo and R. JalabertOrbital magnetism in the ballistic regime: geometrical effectsPhys. Rep., 276 (1996), 1–83.CrossRefGoogle Scholar
  17. 17.
    D. RuelleGeneral linear response formula in statistical mechanics and the fluctuation-dissipation theorem far from equilibriumPhys. Lett., A245 (1998), 220–224.MathSciNetGoogle Scholar
  18. 18.
    D. RuelleSmooth dynamics and new theoretical ideas in nonequilibrium statistical mechanicsJ. Stat. Phys., 95 (1999), 393–468.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. RuelleNatural nonequilibrium states in quantum statistical mechanicsJ. Stat. Phys., 98 (2000), 57–75.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    M. WilkinsonA semiclassical sum rule for matrix elements of classically chaotic systemsJ. Phys. A: (Math. and Gen.), 20 (1987), 2415–2423.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Monique Combescure
    • 1
  • Didier Robert
    • 2
  1. 1.Laboratoire de Physique ThéoriqueUnité Mixte de Recherche — CNRS — UMR N° 8627, Université de Paris XIFrance
  2. 2.Département de Mathématiques, URA CNRS 758Université de NantesNantes CedexFrance

Personalised recommendations