Some Aspects of Mean Curvature Flow in Presence of Nonsmooth Anisotropies

  • Giovanni Bellettini
Part of the Progress in Mathematics book series (PM, volume 202)


We discuss some aspects of motion by mean curvature of hypersur­faces in presence of nonsmooth anisotropies. We include the crystalline case in three dimensions.


Curvature Flow Finsler Geometry Normal Vector Field Dimensional Hausdorff Measure Regular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. J. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies,J. Diff. Geom. 42 (1995), 1–22.MathSciNetzbMATHGoogle Scholar
  2. [2]
    F. J. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387–437.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1993), 91–133.MathSciNetGoogle Scholar
  4. [4]
    G. Bellettini, P. Colli Franzone and M. Paolini, Convergence of front propagation for anisotropic bistable reaction-diffusion equations,Asymp. Anal., 15 (1997), 325–358.MathSciNetzbMATHGoogle Scholar
  5. [5]
    G. Bellettini and I. Fragalà, Elliptic approximations to prescribed mean curvature surfaces in Finsler geometry, Asymp. Anal., 22 (2000), 87–111.zbMATHGoogle Scholar
  6. [6]
    G. Bellettini, R. Goglione and M. Novaga, Approximation to driven motion by crys­talline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467–493.MathSciNetzbMATHGoogle Scholar
  7. [7]
    G. Bellettini and M. Novaga, Approximation and comparison for non-smooth anisotropic motion by mean curvature in R N, Math. Mod. Meth. Appl. Sc., 10 (2000), 1–10.MathSciNetzbMATHGoogle Scholar
  8. [8]
    G. Bellettini, M. Novaga and M. Paolini Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces and Free Boundaries 1 (1999), 39–55.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    G. Bellettini,M. Novaga and M. PaoliniOn a crystalline variational problemArch. Rational Mech. Anal, to appear.Google Scholar
  10. [10]
    G. Bellettini, M. Novaga and M. Paolini, Characterization of facets breaking for non-smooth mean curvature flow in 3D in the convex case, Interfaces and Free Boundaries, to appear.Google Scholar
  11. [11]
    G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Mathematical J., 89 (1996), 537–566.MathSciNetGoogle Scholar
  12. [12]
    G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in the calculus of variations, Ann. Mat. Pura Appl., CLXX (1996), 329–359.Google Scholar
  13. [13]
    H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Mathematics Studies, 1973.Google Scholar
  14. [14]
    Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom., 3 (1991), 749–786.MathSciNetGoogle Scholar
  15. [15]
    M. E. Gage, Evolving plane curves by curvature in relative geometries. II., Duke Math. J., 75 (1994), 79–98.MathSciNetzbMATHGoogle Scholar
  16. [16]
    M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Ra­tional Mech. Anal., 141 (1998), 117–198.MathSciNetzbMATHGoogle Scholar
  17. [17]
    M.-H. Giga and Y. Giga, Crystalline and level set flow-convergence of a crystalline algorithm for a general anisotropie curvature flow in the plane, Free boundary prob­lems: theory and applications, I (Chiba 1999), 64–79, GAKUTO Internat. Ser. Math. Sc. Appl., 13, Gakkutosho, Tokyo, 2000.Google Scholar
  18. [18]
    Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolutions in the plane, Quarterly of Applied Mathematics, IV (1996), 727–737.Google Scholar
  19. [19]
    M. Paolini and F. Pasquarelli, Numerical simulations of crystalline curvature flow in 3D by interface diffusion, in: Free Boundary Problems: theory and applications II, GAKUTO Intern. Ser. Math. Sci. Appl. 14 (N. Kenmochi ed.), Gakkötosho (2000), 376–389, to appear.Google Scholar
  20. [20]
    J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. (N.S.), 84 (1978), 568–588.zbMATHCrossRefGoogle Scholar
  21. [21]
    J. E. Taylor, Complete catalog of minimizing embedded crystalline cones, Proc. Sym­posia Math., 44 (1986), 379–403.Google Scholar
  22. [22]
    J. E. Taylor, II-Mean curvature and weighted mean curvature, Acta Metall. Mater., 40 (1992), 1475–1485.Google Scholar
  23. [23]
    J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. of Symposia in Pure Math., 54 (1993) 417–438.CrossRefGoogle Scholar
  24. [24]
    J. Yunger, Facet stepping and motion by crystalline curvature, Ph.D. Thesis, Rutgers University (1998).Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Giovanni Bellettini
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations