Towards a Microscopic Theory of Phase Coexistence

  • Raphaël Cerf
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)


One of the fundamental goals of statistical mechanics is to understand the macroscopic effects induced by random forces acting at the microscopic level. We illustrate this in the context of the Ising model in the phase coexistence regime: the most likely shapes of macroscopic droplets of one pure phase floating in the other pure phase are close to the Wulff crystal of the model. Furthermore, the law of configurations at equilibrium is governed by a minimal action principle. These results come from joint works with Agoston Pisztora. We list several related open problems.


Ising Model Gibbs Measure Large Deviation Principle Microscopic Theory Phase Coexistence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Alberti, G. Bellettini, M. Cassandro and E. Presutti: Surface tension in Ising systems with Kac potentials. J. Statist. Phys. 82, 743–796 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    K. S. Alexander, J. T. Chayes and L. Chayes: The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Comm. Math. Phys. 131, 1–50 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    G. Bellettini, M. Cassandro and E. Presutti: Constrained minima of nonlocal free energy functionals. J. Statist. Phys. 84, 1337–1349 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    O. Benois, T. Bodineau, P. Buttà and E. Presutti: On the validity of van der Waals theory of surface tension. Markov Process. Rel. Fields 3, 175–198 (1997).zbMATHGoogle Scholar
  5. [5]
    O. Benois, T. Bodineau and E. Presutti: Large deviations in the van der Waals limit. Stochastic Process. Appl. 75, 89–104 (1998).MathSciNetzbMATHGoogle Scholar
  6. [6]
    T. Bodineau: The Wulff construction in three and more dimensions. Comm. Math. Phys. 207 no. 1, 197–229 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    T. Bodineau, D. Ioffe and Y. Velenik: Rigorous probabilistic analysis of equilibrium crystal shapes. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 no. 3, 1033–1098 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    R. Cerf: Large deviations of the finite cluster shape for two-dimensional percolation in the Hausdorff and Ll metric, J. Theoret. Probab. 13 no. 2, 491–518 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    R. Cerf: Large deviations for three dimensional supercritical percolation. Astérisque 267 (2000).Google Scholar
  10. [10]
    R. Cerf and A. Pisztora: On the Wulff crystal in the Ising model. Ann. Probab. 28 no. 3, 945–1015 (2000).MathSciNetGoogle Scholar
  11. [11]
    R. Cerf and A. Pisztora: Phase coexistence in Ising, Potts and percolation models. Ann. Inst. Henri Poincaré, Probab. Stat., 2001, to appear.Google Scholar
  12. [12]
    E. De Giorgi: Nuovi teoremi relativi alle misure (r — 1)-dimensionali in uno spazio ad r dimensioni. Ricerche Mat. 4, 95–113 (1955).MathSciNetzbMATHGoogle Scholar
  13. [13]
    E. De Giorgi: Sulla proprieta isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., VIII Ser. 5, 33–44 (1958).zbMATHGoogle Scholar
  14. [14]
    J.-D. Deuschel and A. Pisztora: Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104, 467–482 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    R. K. Dobrushin: Gibbs state describing coexistence of phases for a three-dimensional Ising model. Theor. Probability Appl. 17 no. 4, 582–600 (1973).CrossRefGoogle Scholar
  16. [16]
    R. K. Dobrushin and O. Hryniv: Fluctuations of the phase boundary in the 2D Ising ferromagnet. Comm. Math. Phys. 189, 395–445 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    R. L. Dobrushin, R. Koteckÿ and S. B. Shlosman: Wulff construction: a global shape from local interaction. AMS translations series, Providence (Rhode Island) (1992).zbMATHGoogle Scholar
  18. [18]
    I. Fonseca: The Wulff theorem revisited. Proc. R. Soc. Lond. Ser. A 432 No. 1884, 125–145 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    I. Fonseca and S. Müller: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb Sect. A 119 No. 1/2, 125–136 (1991).Google Scholar
  20. [20]
    E. Giusti: Minimal surfaces and functions of bounded variation. Birkhäuser (1984).Google Scholar
  21. [21]
    G. R. Grimmett: The stochastic random-cluster process and the uniqueness of random-cluster measures. Ann. Probab. 23, 1461–1510 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    O. Hryniv: On local behaviour of the phase separation line in the 2D Ising model. Probab. Theory Related Fields 110, 91–107 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    D. Ioffe: Large deviations for the 2D Ising model: a lower bound without cluster expansions. J. Statist. Phys. 74, 411–432 (1993).MathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Ioffe: Exact large deviation bounds up to TT for the Ising model in two dimensions. Probab. Theory Related Fields 102, 313–330 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    D. Ioffe and R. Schonmann: Dobrushin-Koteckÿ-Shlosman Theorem up to the critical temperature. Comm. Math. Phys. 199, 117–167 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    H. Kesten and Y. Zhang: The probability of a large finite cluster in supercritical Bernoulli percolation. Ann. Probab. 18, 537–555 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    A. Messager, S. Miracle-Solé and J. Ruiz: Convexity properties of the surface tension and equilibrium crystals. J. Statist. Phys. 67 nos. 3/4, 449–469 (1992).CrossRefGoogle Scholar
  28. [28]
    S. Miracle-Solé: Surface tension, step free energy, and facets in the equilibrium crystal. J. Statist. Phys. 79 nos. 1/2, 183–214 (1995).CrossRefGoogle Scholar
  29. [29]
    C. E. Pfister: Large deviations and phase separation in the two-dimensional Ising model. Hely. Phys. Acta 64, 953–1054 (1991).MathSciNetGoogle Scholar
  30. [30]
    C. E. Pfister and Y. Velenik: Large deviations and continuum limit in the 2D Ising model. Probab. Theory Related Fields 109, 435–506 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    A. Pisztora: Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104, 427–466 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    R. Schonmann and S. B. Shlosman: Constrained variational problem with applications to the Ising model. J. Statist. Phys. 83, 867–905 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    R. Schonmann and S. B. Shlosman: Complete analyticity for the 2D Ising model completed. Comm. Math. Phys. 170, 453–482 (1996).MathSciNetGoogle Scholar
  34. [34]
    R. Schonmann and S. B. Shlosman: Wulff droplets and the metastable relaxation of kinetic Ising models. Comm Math. Phys. 194, 389–462 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    ] J. E. Taylor: Crystalline variational problems. Bull. Am. Math. Soc. 84 no. 4, 568–588 (1978).CrossRefGoogle Scholar
  36. [36]
    G. Wulff: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Z. Kristallogr. 34, 449–530 (1901).Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Raphaël Cerf
    • 1
  1. 1.Université Paris Sud MathématiqueOrsay CedexFrance

Personalised recommendations