Advertisement

Curves over Finite Fields and Codes

  • Gerard van der Geer
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

This paper gives a review of recent developments in this field and discusses some questions.

Keywords

Modulus Space Zeta Function Finite Field Linear Code Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Auer: Ray class fields of global function fields with many rational places. Report University of Oldenburg, 1998.Google Scholar
  2. 2.
    N. Elkies: Explicit Modular Towers. Proceedings of the Thirty-Fifth Annual Aller-ton Conference on Communication, Control and Computing (1997, T. Basar and A. Vardy, eds), Univ. of Illinois at Urbana-Champaign 1998, pp. 23–32.Google Scholar
  3. 3.
    N. Elkies, A. Kresch, B. Poonen, J. Wetherell and M. Zieve: Curves of every genus with many points II: asymptotically good families, in preparation.Google Scholar
  4. 4.
    R. Fuhrmann and F. Torres: The genus of curves over finite fields with many rational points. Manuscripta Math. 89 (1996), pp. 103–106.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R. Fuhrmann, A. Garcia and F. Torres: On maximal curves. J. Number Theory 67 (1997), pp. 29–51.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    C. Faber and G. van der Geer: Complete subvarieties of the moduli space of curves. Manuscript in preparation.Google Scholar
  7. 7.
    F. Garcia and H. Stichtenoth: A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound. Invent. Math. 121 (1995), pp. 211–22.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    C. F. Gauss: Disquisitiones Arithmeticae 1801.Google Scholar
  9. 9.
    G. van der Geer and M. van der Vlugt: How to construct curves over finite fields with many points. In: Arithmetic Geometry, (Cortona 1994), F. Catanese Ed., Cambridge Univ. Press, Cambridge, 1997, pp. 169–189.Google Scholar
  10. 10.
    G. van der Geer and M. van der Vlugt: On generalized Reed-Muller codes and curves with many points. J. of Number Theory 72 (1998), pp. 257–268.zbMATHCrossRefGoogle Scholar
  11. 11.
    G. van der Geer and M. van der Vlugt: Tables for the function N 9 (g) Math. of Computation. Regularly updated tables at: http://www.science.uva.nl/geer/geer
  12. 12.
    G. van der Geer and M. van der Vlugt: On the existence of supersingular curves of given genus. Journal für die Reine und angewandte Math. 458 (1998), pp. 53–61.Google Scholar
  13. 13.
    G. van der Geer and M. van der Vlugt: An asymptotically good tower of curves over the field with eight elements. Preprint. arXiv math.AG/0102158.Google Scholar
  14. 14.
    V. D. Goppa: Codes associated with divisors. (Russian) Problemy Peredavci Infor­macii 13 (1977), pp. 33–39.Google Scholar
  15. 15.
    V. D. Goppa: Codes on algebraic curves. (Russian) Dokl. Akad. Nauk SSSR 259 (1981), pp. 1289–1290.MathSciNetGoogle Scholar
  16. 16.
    Y. Ihara: Congruence relations and Shimura curves. II. J. Fac. Sci. Univ. Tokyo 25 (1979), pp. 301–361.MathSciNetGoogle Scholar
  17. 17.
    Y. Ihara: Some remarks on the number of points of algebraic curves over finite fields. J. Fac. Sci. Tokyo 28 (1982), pp. 721–724.MathSciNetGoogle Scholar
  18. 18.
    A. Kresch, J. Wetherell and M. Zieve: Curves of every genus with many points, I: Abelian and toric families. Preprint 2000.Google Scholar
  19. 19.
    K. Lauter: Ray class field constructions of curves over finite fields with many rational points. In: Algorithmic Number Theory (Talence 1996), H. Cohen Ed., Lecture Notes in Computer Science 1122, Springer-Verlag Berlin, 1996, pp. 187–195.Google Scholar
  20. 20.
    K. Lauter: Non-existence of a curve over F3 of genus 5 with 14 rational points. Proc. Amer. Math. Soc. 128 (2000), pp. 369–374.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    K. Lauter: Improved upper bounds for the number of rational points on algebraic curves over finite fields. Comptes Rend. Acad. Sci. Paris Sér. I Math. 328 (1999), pp. 1181–1185.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    K.-Z. Li and F. Oort: Moduli of supersingular abelian varieties. Springer Lecture Notes in Mathematics, 1680. Springer-Verlag, Berlin, 1998.zbMATHGoogle Scholar
  23. 23.
    J. van Lint: Introduction to Coding Theory. Graduate Texts in Mathematics. Springer-Verlag, 1998.Google Scholar
  24. 24.
    F. MacWilliams and N. Sloane: The theory of error-correcting codes. North-Holland Publishing Company 1977.Google Scholar
  25. 25.
    Yu. I. Manin: What is the maximum number of points on a curve over F2? J. Fac. Sci. Tokyo 28 (1981), pp. 715–720.Google Scholar
  26. 26.
    H. Niederreiter and C. P. Xing: Drinfeld modules of rank 1 and algebraic curves with many rational points II. Acta Arithm. 81 (1997), pp. 81–100.MathSciNetzbMATHGoogle Scholar
  27. 27.
    H. Niederreiter and C. P. Xing: Global function fields with many rational points over the ternary field. Acta Arithm. 83 (1998), pp. 65–86.MathSciNetzbMATHGoogle Scholar
  28. 28.
    H. Niederreiter and C. P. Xing: Algebraic curves with many rational points over finite fields of characteristic 2. In: Number Theory in Progress (Zakopane 1997), pp. 359–380, de Gruyter, Berlin, 1999.Google Scholar
  29. 29.
    H. Niederreiter and C. P. Xing: A general method of constructing global function fields with many rational places. To appear in: Algorithmic Number Theory (Portland 1998), Lecture Notes in Comp. Science 1423 (1998), Springer-Verlag, Berlin.Google Scholar
  30. 30.
    R. Schoof: Algebraic curves and coding theory. UTM 336, University of Trento, 1990.Google Scholar
  31. 31.
    J.-P. Serre: Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini. Comptes Rendus Acad. Sci. Paris 296 (1983), pp. 397–402.zbMATHGoogle Scholar
  32. 32.
    J.-P. Serre: Nombre de points des courbes algébriques sur F q . Sém. de Théorie des Nombres de Bordeaux, 1982/83, exp. no. 22. (= Oeuvres III, No. 129, pp. 664–668).Google Scholar
  33. 33.
    J.-P. Serre: Quel est le nombre maximum de points rationnels que peut avoir une courbe algébrique de genre g sur un corps fini F q ? Résumé des Cours de 1983–1984. (=Œuvres III, No. 132, pp. 701–705).Google Scholar
  34. 34.
    J.-P. Serre: Rational points on curves over finite fields. Notes of lectures at Harvard University, 1985.Google Scholar
  35. 35.
    V. Shabat: Curves with many points. Thesis, University of Amsterdam, 2001.Google Scholar
  36. 36.
    K. O. Stöhr and J. F. Voloch: Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52 (1986), pp. 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    M. A. Tsfasman, S. G. Vladuts and Th. Zink: On Goppa codes which are better than the Varshamov-Gilbert bound. Math. Nachrichten 109 (1982), pp. 21–28.zbMATHCrossRefGoogle Scholar
  38. 38.
    S. G. Vladuts and V. G. Drinfeld: Number of points of an algebraic curve. Funct. Anal. 17 (1983), pp. 68–69.CrossRefGoogle Scholar
  39. 39.
    V. K. Wei: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37 (1991), pp. 1412–1418.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Th. Zink: Degeneration of Shimura surfaces and a problem in coding theory. Funda­mentals of computation theory (Cottbus, 1985), 503–511, Lecture Notes in Comput. Sci., 199, Springer-Verlag, Berlin-New York, 1985.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Gerard van der Geer
    • 1
  1. 1.Korteweg-de Vries InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations