Curves over Finite Fields Attaining the Hasse-Weil Upper Bound

  • Arnaldo Garcia
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)


Curves over finite fields (whose cardinality is a square) attaining the Hasse-Weil upper bound for the number of rational points are called maximal curves. Here we deal with three problems on maximal curves:
  1. 1

    Determination of the possible genera of maximal curves.

  2. 2

    Determination of explicit equations for maximal curves.

  3. 3

    Classification of maximal curves having a fixed genus.



Rational Point Finite Field Algebraic Curf Maximal Curve Quadratic Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abdán and F. Torres, On maximal curves in characteristic two, Manuscripta Math., 99 (1999), 39–53.MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Bombieri, Hilbert’s 8th problem: An analogue, Proc. Symp. Pure Math., 28 (1976), 269–274.MathSciNetGoogle Scholar
  3. 3.
    A. Cossidente, J. W. P. Hirschfeld, G. Korchm¨¢ros and F. Torres, On plane maximal curves, Compositio Math., 121 (2000), 163–181.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Cossidente, G. Korchm¨¢ros and F. Torres, On curves covered by the Hermitian curve, J. Algebra, 216 (1999), 56–76.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, Comm Algebra, 28 (2000), 4707–4728.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    L. E. Dickson, History of the theory of numbers, Vol. II, Chelsea Publ. Comp., New York, (1971).Google Scholar
  7. 7.
    R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory, 67(1) (1997), 29–51.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math., 89 (1996), 103–106.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9] A. Garcia and L. Quoos, A construction of curves over finite fields, to appear in Acta Arithmetica.Google Scholar
  10. 10.
    A. Garcia and H. Stichtenoth, On Chebyshev polynomials and maximal curves, Acta Arithmetica, 90 (1999), 301–311.MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of the Hermitian function field, Compositio Math., 120 (2000), 137–170.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Garcia and F. Torres, On maximal curves having classical Weierstrass gaps, Contemporary Math., 245 (1999), 49–59.MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. van der Geer and M. van der Vlugt, Fibre products of Artin-Schreier curves and generalized Hamming weights of codes, J. Comb. Theory A, 70 (1995), 337–348.Google Scholar
  14. 14.
    G. van der Geer and M. van der Vlugt, Generalized Hamming weights of codes and curves over finite fields with many points, Israel Math. Conf. Proc., 9 (1996), 417–432.Google Scholar
  15. 15.
    V. D. Goppa, Geometry and Codes, Mathematics and its applications, 24, Kluwer Academic Publishers, Dordrecht-Boston-London (1988).Google Scholar
  16. 16.
    J. W. P. Hirschfeld, Projective geometries over finite fields, second edition, Oxford University Press, Oxford (1998).zbMATHGoogle Scholar
  17. 17.
    Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokio, 28 (1981), 721–724.MathSciNetzbMATHGoogle Scholar
  18. 18.
    A. I. Kontogeorgis, The group of automorphisms of function fields of the curve xn + ytn +1 = 0, J Number Theory, 72 (1998), 110–136.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    G. Lachaud, Sommes d’Eisenstein et nombre de points de certaines courbes alg¨¦briques sur les corps finis, C.R. Acad. Sci. Paris, 305, S¨¦rie I (1987), 729–732.Google Scholar
  20. 20.
    H. W. Leopoldt, Ober die Automorphismengruppe des Fermatkörpers, J. Number Theory, 56 (1996), 256–282.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of mathematics and its applications, 20 Addison-Wesley (1983).Google Scholar
  22. 22.
    C. J. Moreno, Algebraic curves over finite fields, Cambridge University Press, 97 (1991).Google Scholar
  23. 23.
    H. G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math., 457 (1994), 185–188.zbMATHGoogle Scholar
  24. 24.
    F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen II. Allgemeine Theorie der Weierstrasspunkte, Math. Z., 45 (1939), 75–96.MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. A. Stepanov, Arithmetic of algebraic curves, Monographs in contemporary mathematics, Consultants Bureau, New York - London (1994).Google Scholar
  26. 26.
    H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik, Arch. Math., 24 (1973), 527–544 and 615–631.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    H. Stichtenoth and C. P. Xing, The genus of maximal function fields over finite fields, Manuscripta Math., 86 (1995), 217–224.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1–19.zbMATHCrossRefGoogle Scholar
  29. [29] A. Weil, Courbes alg¨¦briques et vari¨¦t¨¦s abeliennes,Hermann, Paris, (1971).IMPA,Estrada Dona Castorina 110 22.460–320, Rio de Janeiro, RJ BrasilE-mail address: Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Arnaldo Garcia
    • 1
  1. 1.IMPARio de JaneiroBrasil

Personalised recommendations