Applications of Computer Algebra to Algebraic Geometry, Singularity Theory and Symbolic-Numerical Solving

  • Gert-Martin Greuel
Part of the Progress in Mathematics book series (PM, volume 202)


Although computer algebra is a research field in its own, its main driving force comes from various fields of applications. These applications range from mathematics and computer science over physics and engineering up to applications to technical and industrial problems.


Modulus Space Algebraic Geometry Computer Algebra Polynomial System Primary Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. I. Arnold, S.M. GuseinäZade and A. N. Varchenko, Singularities of Differential Maps, Volume I. Birkhäuser, 1985.CrossRefGoogle Scholar
  2. [2]
    J. Abbott, M. Kreuzer and L. Robbiano, Computing zero-dimensional schemes, Preprint in preparation (2000).Google Scholar
  3. [3]
    T. Bayer, Computation of moduli spaces for semi quasihomogeneous singularities and an implementation in SINGULAR, Diplomarbeit, Kaiserslautern, 2000.Google Scholar
  4. [4]
    A. Borel, Linear Algebraic Groups,2nd Edition, Springer-Verlag, 1991.Google Scholar
  5. [5]
    E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., 2, 103–161 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal,PhD Thesis, University of Innsbruck, Austria, 1965.Google Scholar
  7. [7]
    B. Buchberger, Ein algorithmisches Kriterium fér die Lösbarkeit eines algebraischen Gleichungssystems, Aqu. Math., 4 374–383 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: Recent trends in multidimensional system theory, N.B. Bose, ed., Reidel (1985).Google Scholar
  9. [9]
    B. Buchberger and F. Winkler, Gröbner Bases and Applications, LNS 251, 109–143, CUP (1998).Google Scholar
  10. [10]
    T. Becker and V. Weispfenning, Gröbner Bases A Computational Approach to commutative Algebra,Graduate Texts in Mathematics 141,Springer-Verlag,1993. Google Scholar
  11. [11]
    J.F. Canny and I.Z. Emiris, A Subdivision-Based Algorithm for the Sparse Resultant, Preprint, Berkeley, 1997.Google Scholar
  12. [12]
    D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms, Springer-Verlag, 1992.zbMATHGoogle Scholar
  13. [136]
    D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Springer-Verlag, 1998.Google Scholar
  14. [14]
    C. Ciliberto and R. Miranda, Linear Systems of Plane Curves with Base Points of Equal Multiplicity, Duke preprint, no. math.AG/9804018 (1998).Google Scholar
  15. [15]
    H. Derksen, Constructive Invariant Theory and the Linearization Problem, PhD Thesis, University of Basel, 1997.Google Scholar
  16. [16]
    W. Decker, G.-M. Greuel, T. de Jong and G. Pfister, The normalization: a new algorithm, implementation and comparisons, in: Proc. EUROCONFERENCE Computational Methods for Representations of Groups and Algebras (1.4.-5.4.1997), 177–185, Birkhäuser, 1998.Google Scholar
  17. [17]
    W. Decker, G.-M. Greuel and G. Pfister, Primary decomposition: algorithms and comparisons, in: G.-M. Greuel, B. H. Matzat and G. Hiß (Eds.), Algorithmic Algebra and Number Theory, 187–220, Springer-Verlag, 1998.Google Scholar
  18. [18]
    J. Della Dorca, C. Dicrescenzo and D. Duval, About a new method for computing in algebraic number fields, EUROCAL 1985, LN in CS 204, 289–290 (1985).Google Scholar
  19. [19]
    D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry. Springer-Verlag, 1995.Google Scholar
  20. [20]
    D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math., 110, 207–235 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    G.-M. Greuel, C. Hertling and G. PfisterModuli Spaces of Semiquasihomogeneous Singularities with fixed Principal Part. J. of Alg. Geom. 6, no. 1, 169–199 1997MathSciNetzbMATHGoogle Scholar
  22. [22]
    I. Gelfand, M. Kapranov and A. Zelevinski, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994.zbMATHGoogle Scholar
  23. [23]
    R. Gerard and A.H.M. Levelt Invariants mesurant l’irrégularité en un point singulier des systèmes d’équations différentielles linéaires, Ann. Inst. Fourier Grenoble, 23, 157–195 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    G.-M. Greuel, C. Lossen and E. Shustin Plane curves of minimal degree with prescribed singularities, Invent. Math. 133, 539–580 (1998).MathSciNetzbMATHGoogle Scholar
  25. [25]
    G.-M. Greuel, B.H. Matzat and G. Hiß (Eds.), Algorithmic Algebra and Number Theory, 187–220, Springer-Verlag, 1998.Google Scholar
  26. [26]
    S.M. GuseinäZade and N.N. Nekhoroshev, On A k -singularity on a plane curve of fixed degree, Duke preprint, no. math.AG/9906147 (1999).Google Scholar
  27. [27]
    G.-M. Greuel and G. Pfister Advances and improvements in the theory of standard bases and syzygies, Arch. Math. 66, 163–176 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    G.-M. Greuel and G. Pfister, Gröbner bases and algebraic geometry, in: B. Buch-berger and F. Winkler (Eds.): Gröbner Bases and Applications, LNS 251, 109–143. CUP 1998Google Scholar
  29. [29]
    G.-M. Greuel and G. Pfister, Moduli spaces for torsion free modules on curve singularities I, J. Algebraic Geometry 2, 81–135 (1993).MathSciNetzbMATHGoogle Scholar
  30. [30]
    G.-M. Greuel, G. Pfister and H. Schönemann. SINGULAR, A System for Polynomial Computations,version 1.2 User Manual, in: Reports On Computer Algebra, number 21. Centre for Computer Algebra, University of Kaiserslautern, June 1998 Available via
  31. [31]
    G.-M. Greuel, Deformation und Klassifikation von Singularitäten und Moduln, Jahresber. Deutsche Math.-Verein Jubiläumstagung 1990, 177–238 (1992).Google Scholar
  32. [32]
    G.-M. Greuel, Computer algebra and algebraic geometry - achievements and perspectives, to appear in JSC, 2000.Google Scholar
  33. [33]
    P. Gianni, B. Trager and G. Zacharias, Gröbner Bases and Primary Decomposition of Polynomial Ideals, J. Symbolic Computation 6 149–167 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    D. Hillebrand, Triangulierung nulldimensionaler Ideale - Implementierung und Vergleich zweier Algorithmen, Diplomarbeit, Dortmund, 1999.Google Scholar
  35. [35]
    V. Kulikov, Mixed Hodge Structures and Singularities, Cambridge Tracts in Mathematics 132, Cambridge University Press, 1998Google Scholar
  36. [36]
    D. Lazard, Solving Zero-dimensional Algebraic Systems, J. Symbolic Computation 13 117–131, (1992).Google Scholar
  37. [37]
    C. Lossen, The geometry of equisingular and equianalytic families of curves on a surface, PhD Thesis, University of Kaiserslautern, 1998zbMATHGoogle Scholar
  38. [38]
    J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Studies 61 Princeton (1968).Google Scholar
  39. [39]
    H. M. Möller, Gröbner Bases and Numerical Analysis, in: B. Buchberger and F. Winkler (Eds.): Gröbner Bases and Applications. LNS 251, 159–178, CUP 1998Google Scholar
  40. [40]
    D. Mumford and J. Fogarty, Geometric Invariant Theory, Springer-Verlag, 1982.Google Scholar
  41. [41]
    N. Nagata, On the fourteenth problem of Hilbert, Amer. J. Math. 81, 766–772, (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    P. E. Newstead, Introduction to moduli problems and orbit spaces,Lecture Notes, Tata Institute of Fundamental Research, Springer-Verlag, 1978.Google Scholar
  43. [43]
    Z. Ran, On the Nagata Problem, Duke preprint, no. math.AG/9809101 (1998).Google Scholar
  44. [44]
    J. Roé, On the existence of plane curves with prescribed multiple points, Duke preprint, no. math.AG/9807066 (1998).Google Scholar
  45. [45]
    M. Schulze, Computation of the Monodromy of an Isolated Hypersurface Singularity, Diploma Thesis, Kaiserslautern, 1999.Google Scholar
  46. [46]
    B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, 1993.Google Scholar
  47. [47]
    H. Stetter, Matrix eigenproblems are at the heart of polynomial systems solving, Sigsam Bulletin 30, 22–25 (1996).Google Scholar
  48. [48]
    H. Stetter, Stabilization of polynomial systems solving with Groebner bases, in Proceedings of ISSAC 97, 117–124 (1997).Google Scholar
  49. [49]
    J. Verschelde, Polynomial homotopies for dense, sparse and determinantal systems, Duke preprint, no. math.NA/9907060 (1999).Google Scholar
  50. [50]
    M. Wenk, Resultantenmethoden zur Lösung algebraischer Gleichungssysteme implementiert in SINGULAR, Diplomarbeit, Kaiserslautern, 1999.Google Scholar
  51. [51]
    A. Wallack, I. Z. Emiris and D. Monacho, MARS: A Maple/Matlab/C Resultant-Based Solver, in Proceedings of ISSAC 98, 244–251 (1998).Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Gert-Martin Greuel
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations