Classification Results on Valuations on Convex Sets

  • Semyon Alesker
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)


We discuss classification results on continuous valuations on convex sets obtained mostly during the last five years. Also we briefly describe some earlier results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alesker, S.; Continuous rotation invariant valuations on convex sets. Ann. of Math.Google Scholar
  2. [2]
    no. 3, 977–1005.Google Scholar
  3. [3]
    Alesker, S.; Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata 74 (1999), no. 3, 241–248.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Alesker, S.; Continuous valuations on convex sets. Geom. Funct. Anal. 8 (1998), no. 2, 402–409.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Alesker, S.; On P. McMullen.s conjecture on translation invariant valuations on con­vex sets. Adv. Math. 155 (2000), no. 2, 239–263.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Alesker, S.; Description of translation invariant valuations with the solution of P. Mc­Mullen.s conjecture. GAFA 11 (2001), no. 2, 244–272.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Beilinson, A. and Bernstein, J.; Localisation de g-modules. (French) C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Goodey, P. and Weil, W.; Distributions and valuations. Proc. London Math. Soc.(3) 49 (1984), no. 3, 504–516.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Blaschke, W.Vorlesungen über Integralgeometrie. (German) 3te Aufl. Deutscher Verlag der Wissenschaften, Berlin, 1955. (First edition: 1937.)Google Scholar
  10. [10]
    Hadwiger, H.; Beweis eines Funktionalsatzes für konvexe Körper. (German) Abh. Math. Sem. Univ. Hamburg 17 (1951), 69–76.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Hadwiger, H.; Additive Funktionale k-dimensionaler Eikörper. I. (German) Arch. Math. 3 (1952), 470–478.zbMATHGoogle Scholar
  12. [12]
    Hadwiger, H.; Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. (German) Springer-Verlag, Berlin-Göttingen-Heidelberg 1957.zbMATHCrossRefGoogle Scholar
  13. [13]
    Hadwiger, H.; Translationsinvariant, additive und Stetige Eibereichfunktionale. Publ. Math. Debrecen 2 (1951), 81–94.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Howe, Roger and Lee, Soo Teck; Degenerate principal series representations of GLn(C) and GL, (118). J. Funct. Anal. 166 (1999), no. 2, 244–309.Google Scholar
  15. [15]
    Khovanskii, A. G. and Pukhlikov, A. V.; Finitely additive measures on virtual poly­hedra. (Russian) Algebra i Analiz 4 (1992), no. 2, 161–85; translation in St. Peters­burg, Math. J. 4 (1993), no. 2, 337–356.MathSciNetGoogle Scholar
  16. [16]
    Khovanskii, A. G. and Pukhlikov, A. V.; A Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes. (Russian) Algebra i Analiz 4 (1992) no. 4, 188–216; translation in St. Petersburg Math. J. 4 (1993), no. 4, 789–812.MathSciNetGoogle Scholar
  17. [17]
    Klain, D. A.; A short proof of Hadwiger.s characterization theorem. Mathematika 42 (1995), no. 2, 329–339.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Klain, D. A. and Rota, G.-C.; Introduction to geometric probability. Lezioni Lincee. [Lincei Lectures] Cambridge University Press, Cambridge, 1997.zbMATHGoogle Scholar
  19. [19]
    Ludwig, M. and Reitzner, M.; A characterization of affine surface area. Adv. Math. 147 (1999), no. 1, 138–172.MathSciNetzbMATHGoogle Scholar
  20. [20]
    McMullen, P.; Valuations and Euler-type relations on certain classes of convex poly­topes. Proc. London Math. Soc. (3) 35 (1977), no. 1, 113–135.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    McMullen, P.; Continuous translation-invariant valuations on the space of compact convex sets. Arch. Math. (Basel) 34 (1980), no. 4, 377–384.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    McMullen, P.; Valuations and dissections. Handbook of convex geometry, Vol. A, B, 933–988, North-Holland, Amsterdam, 1993, P. M. Gruber and J. M. Wills, eds.Google Scholar
  23. [23]
    McMullen, P.; Isometry covariant valuations on convex bodies. II International Con­ference in “Stochastic Geometry, Convex Bodies and Empirical Measures” (Agri­gento, 1996). Rend. Circ. Mat. Palermo (2) Suppl. No. 50, (1997), 259–271.MathSciNetGoogle Scholar
  24. [24]
    McMullen, P. and Schneider, R.; Valuations on convex bodies. Convexity and its applications, 170–247, Birkhäuser, Basel-Boston, Mass., 1983.Google Scholar
  25. [25]
    Schneider, R.; Convex bodies: the Brunn—Minkowski theory. Encyclopedia of Math­ematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.Google Scholar
  26. [26]
    Schneider, R.; Simple valuations on convex bodies. Mathematika 43 (1996), no. 1, 32–39.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Semyon Alesker
    • 1
  1. 1.Department of MathematicsTel Aviv UniversityTel AvivIsrael

Personalised recommendations