Global Models of Surface Wave Group Velocity

  • Erik W. F. Larson
  • Göran Ekström
Part of the Pageoph Topical Volumes book series (PTV)


Measurements of group velocity are derived from phase-velocity dispersion curves and modeled with global laterally-varying isotropic structure. Maps for both Love and Rayleigh waves are created in the period range 35 s to 175 s. The data set of group-velocity measurements includes over 50,000 minor-arc observations and 5,000 major-arc observations. The errors in the measurements are estimated by an empirical method of comparing pairwise-similar paths, resulting in uncertainties which are 20% to 40% of the size of the typical measurement. The models are determined by least-squares inversion for spherical harmonic maps expanded up to degree 40. This parameterization allows for resolution of structures as small as 500 km. The models explain 70–98% of the variance relative to the Preliminary Reference Earth Model (PREM). For the area of Eurasia, the group-velocity maps from this study are compared with those of RITZWOLLER and LEVSHIN (1998). The results of the two studies are in very good agreement, particularly in terms of spatial correlation. The models also agree in amplitude at wavelengths longer than 30 degrees. For shorter wavelengths, the agreement is good only for models at short periods. The global maps are useful for prediction of group arrival times, for revealing tectonic structures, for determination of seismic event locations and source parameters, and as a basis for regional group-velocity studies.

Key words

Surface waves Love wave Rayleigh waves group velocity tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chevrot, S., Montagner, J. P., and Snieder, R. (1998), The Spectrum of Tomographic Earth Models, Geophys. J. Int. 133(3), 783–788.CrossRefGoogle Scholar
  2. Curtis, A., Trampert, J., Snieder, R., and Dost, B. (1998), Eurasian Fundamental Mode Surface Wave Phase Velocities and their Relationship with Tectonic Structures, J. Geophys. Res. 103(B11), 26,919–26,947.CrossRefGoogle Scholar
  3. Demets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current Plate Motions, Geophys. J. Int. 101(2), 425–578.CrossRefGoogle Scholar
  4. Dorman, J. seismic Surface-Wave Data On The Upper Mantle. In the Earth’s Crust and Upper Mantle, Volume 13 Of geophysical Monograph, Pp. 257–265 (Washington, DC., American Geophysical Union 1969).Google Scholar
  5. Dziewonski, A., Chou, T., and Woodhouse, J. (1981), Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity, Geophys. J. R. astr. Soc. 86, 2825–2852.Google Scholar
  6. Dziewonski, A. M., and Anderson, D. L. (1981), Preliminary Reference Earth Model, Phys. Earth Planet. Int. 25(4), 297–356.CrossRefGoogle Scholar
  7. Dziewonski, A. M., Bloch, S., and Landisman, M. (1969), A Technique for the Analysis of Transient Seismic Signals, Bull. Seismol. Soc. Am. 59(1), 427–444.Google Scholar
  8. Ekström, G., Tromp, J., and Larson, E. W. F. (1997), Measurements and Global Models of Surface Wave Propagation, J. Geophys. Res. 702(B4), 8137–8157.CrossRefGoogle Scholar
  9. Keilis-Borok, V. I. (ed.) Seismic Surface Waves in a Laterally Inhomogeneous Earth. (Norwell, mass: Kluwer Academic Publishers 1989).Google Scholar
  10. Knopoff, L., and Schwab, F. A. (1968), Apparent Initial Phase of a Source of Rayleigh Waves, J. Geophys. Res. 73, 755–760.CrossRefGoogle Scholar
  11. Larson, E. W. F., Tromp, J., and Ekström, G. (1998), Effects of Slight Anisotropy on Surface-wave Propagation, Geophys. J. Int. 132(3), 654–666.CrossRefGoogle Scholar
  12. Laske, G., and Masters, G. (1996), Constraints on Global Phase Velocity Maps from Long-period Polarization Data, J. Geophys. Res. 16(B7), 16,059–16,075.CrossRefGoogle Scholar
  13. Levshin, A., Ratnikova, L., and Berger, J. (1992), Peculiarities of Surface-wave Propagation across Central Eurasia, Bull. Seismol. Soc. Am. 82(6), 2464–2493.Google Scholar
  14. Levshin, A. L., Ritzwoller, M. H., and Resovsky, J. S. (1999), Source Effects on Surface Wave Group Travel Times and Group Velocity Maps, Phys. Earth Planet. Int. 115(3–4), 293–312.CrossRefGoogle Scholar
  15. Levshin, A. L., Yanovskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. L, and Its, E. N. (1989), Seismic Surface Waves in a Laterally Inhomogeneous Earth, Chapter 5. In Keilis-Borok (1989).Google Scholar
  16. Montagner, J.-P., and Tanimoto, T. (1990), Global Anisotropy in the Upper Mantle Inferred from the Regionalization of Phase Velocities, J. Geophys. Res. 95, 4797–4819.CrossRefGoogle Scholar
  17. Muyzert, E., and Snieder, R. (1996), The Influence of Errors in Source Parameters on Phase Velocity Measurements of Surface Waves, Bull. Seismol. Soc. Am. 86(6), 1863–1872.Google Scholar
  18. Nishimura, C. E., and Forsyth, D. W. (1988), Rayleigh Wave Phase Velocities in the Pacific with Implications for Azimuthal Anisotropy and Lateral Heterogeneities, Geophys. J. R. astr. Soc. 94, 479–501.CrossRefGoogle Scholar
  19. Passier, M. L., and Snieder, R. K. (1995), On the Presence of Intermediate-scale Heterogeneity in the Mantle, Geophys. J. Int. 123(3), 817–837.CrossRefGoogle Scholar
  20. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., numerical Recipies In C: The Art Of Scientific Computing (2nd edn.) (Cambridge University Press 1992Google Scholar
  21. Ritzwoller, M. H., and Levshin, A. L. (1998), Eurasian Surface Wave Tomography: Group Velocities, J. Geophys. Res. 103(B3), 4839–4878.CrossRefGoogle Scholar
  22. Rosa, J. W. C., (1987), A Global Study on Phase Velocity, Group Velocity and Attenuation of Rayleigh Waves in the Period Range 20 to 100 Seconds, Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.Google Scholar
  23. Trampert, J., and Woodhouse, J. H. (1995), Global Phase Velocity Maps of Love and Rayleigh waves between 40 and 150 Seconds, Geophys. J. Int. 122, 675–690.CrossRefGoogle Scholar
  24. Trampert, J., and Woodhouse, J. H. (1996), High Resolution Global Phase Velocity Distributions, Geophys. Res. Lett. 23(1), 21–24.CrossRefGoogle Scholar
  25. Van Heijst, H. J., and Woodhouse, J. H. (1999), Global High Resolution Phase Velocity Distributiuons of Overtone and Fundamental Mode Surface Waves Determined by Mode Branch Stripping, Geophys. J. Int. 137, 601–620.CrossRefGoogle Scholar
  26. Wang, Z., and Dahlen, F. (1995), Validity of Surface-Wave Ray Theory on a Laterally Heterogeneous Earth, Geophys. J. Int. 123, 757–773.CrossRefGoogle Scholar
  27. Wang, Z., Tromp, J., and Ekström, G. (1998), Global and Regional Surface-wave Inversions; A Spherical-spline Parameterization, Geophys. Res. Lett. 25(2), 207–210.CrossRefGoogle Scholar
  28. Wessel, P., and Smith, W. H. F. (1998), New, Improved Version of the Generic Mapping Tools Released, EOS Trans. AGU 79(47), 579.CrossRefGoogle Scholar
  29. Zhang, Y.-S., and Lay, T. (1996), Global Surface Wave Phase Velocity Variations, J. Geophys. Res. 101(B4), 8415–8436.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Erik W. F. Larson
    • 1
  • Göran Ekström
    • 1
  1. 1.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations