Introduction to Group Actions in Symplectic and Complex Geometry

  • Alan Huckleberry
Part of the DMV Seminar Band book series (OWS, volume 31)


In this preparatory chapter certain basic results on differentiable manifolds are outlined. Standard references should include [Sp] and [War].


Complex Manifold Symplectic Manifold Principal Bundle Borel Subgroup Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    A. Borel, Linear algebraic groups, 2nd enlarged ed., Springer-Verlag, New York, 1991.CrossRefGoogle Scholar
  2. [BH]
    A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I., Amer. J. Math. 80 (1958), 458–538.MathSciNetCrossRefGoogle Scholar
  3. [BTD]
    T. Brocker and T. tom Dieck, Representations of compact Lie groups, Corrected reprint of the 1985 orig., Springer, New York, 1995.Google Scholar
  4. [GF]
    H. Grauert and K. Fritzsche, Several complex variables, Springer-Verlag, New York — Heidelberg — Berlin, 1976.CrossRefzbMATHGoogle Scholar
  5. [GrRe]
    H. Grauert and R. Remmert, Coherent analytic sheaves, Springer-Verlag, Berlin, 1984.CrossRefzbMATHGoogle Scholar
  6. [GH]
    P. Griffiths and J. Harris, Principles of algebraic geometry, 2nd ed., John Wiley Sons, New York, 1994.zbMATHGoogle Scholar
  7. [GS]
    V. Guillemin and S. Sternberg, Symplectic techniques in physics, Reprinted with corrections, Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  8. [GuRo]
    R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.zbMATHGoogle Scholar
  9. [Ho]
    G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco — London — Amsterdam, 1965.zbMATHGoogle Scholar
  10. [Hui.]
    J. E. Humphreys, Linear algebraic groups, Corr. 2nd printing, Springer-Verlag, New York — Heidelberg — Berlin, 1981.zbMATHGoogle Scholar
  11. [Hu2]
    J. E. Humphreys, Introduction to Lie algebras and representation theory, 3rd printing, rev., Springer-Verlag, New York — Heidelberg — Berlin, 1980.Google Scholar
  12. [KK]
    B. Kaup and L. Kaup, Holomorphic functions of several variables. An introduction to the fundamental theory, Walter de Gruyter, Berlin - New York, 1983.CrossRefzbMATHGoogle Scholar
  13. [Kiri]
    A.A. Kirillov, Geometric quantization, in: Dynamical systems. IV. Symplectic geometry and its applications, Eds. V.I. Arnol’d and S.P. Novikov, 137–172, Encycl. Math. Sci. 4, Springer, Berlin, 1990.Google Scholar
  14. [Kirw]
    F. Kirwan, Convexity properties of the moment mapping III, Invent. Math. 77 (1984), 547–552.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Kob]
    S. Kobayashi, Transformation groups in differential geometry, Reprint of the 1972 ed., Springer-Verlag, Berlin, 1995.Google Scholar
  16. [Kos]
    B. Kostant, Quantization and unitary representations I: Prequantization, in: Lectures in Modern Analysis and Applications III, Lect. Notes Math. 170, 87–207, Springer, Berlin, 1970.CrossRefGoogle Scholar
  17. [Kr]
    S. G. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth and Brooks/Cole, Pacific Grove, CA, 1992.zbMATHGoogle Scholar
  18. [N]
    R. Narasimhan, Several complex variables, The University of Chicago Press, Chicago-London, 1971.zbMATHGoogle Scholar
  19. [R]
    M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, New York, 1986.zbMATHGoogle Scholar
  20. [RV]
    R. Remmert and T. van de Ven, Uber holomorphe Abbildungen projektivalgebraischer Mannigfaltigkeiten auf komplexe Raume, Math. Ann. 142 (1961), 453–486.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [So]
    J.-M. Souriau, Quantification geometrique, Comm. Math. Phys. 1 (1966), 374–398.MathSciNetzbMATHGoogle Scholar
  22. [Sp]
    M. Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus, W.A. Benjamin, New York - Amsterdam, 1965.zbMATHGoogle Scholar
  23. [Wal]
    N. R. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, New York, 1973.zbMATHGoogle Scholar
  24. [War]
    F. W. Warner, Foundations of differentiable manifolds and Lie groups, Reprint, Springer-Verlag, New York, 1983.zbMATHGoogle Scholar
  25. [We]
    R. o. Wells, Differential analysis on complex manifolds, 2nd ed., Springer-Verlag, New York - Heidelberg - Berlin, 1980.zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Alan Huckleberry
    • 1
  1. 1.Mathematisches InstitutRuhr-Universität BochumBochumGermany

Personalised recommendations