Skip to main content

A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixed Rhombus

  • Conference paper

Part of the book series: Trends in Mathematics ((TM))

Abstract

We state, discuss, provide evidence for, and prove in special cases the conjecture that the prob-ability that a random tiling by rhombi of a hexagon with side lengths 2n +a,2n + b, 2n +c,2n + a, 2n + b, 2n + c contains the (horizontal) rhombus with coordinates (2n + x, 2n + y) is equal to \(\tfrac{1}{3} + {{g}_{{a,b,c,x,y}}}\left( n \right){{\left( {_{n}^{{2n}}} \right)}^{3}}/\left( {_{{3n}}^{{6n}}} \right)\),where ga b,c,x,y (n) isa rational function in n. Several specific instances of this “1/3-phenomenon” are made explicit.

ArticleNote

Research partially supported by the Austrian Science Foundation FWF, grant P12094-MAT and P13190-MAT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935.

    MATH  Google Scholar 

  2. M. Ciucu and C. Krattenthaler, The number of centered lozenge tilings of a symmetric hexagon J. Combin. Theory Ser. A 86 103–126, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Cohn, M. Larsen and J. Propp, The shape of a typical boxed plane partition, New York J. Math. 4 137–166, 1998.

    MathSciNet  MATH  Google Scholar 

  4. G. David and C. Tomei, The problem of the calissons, Amer. Math. Monthly 96 429–431, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Fischer, Enumeration of rhombus tilings of a hexagon which contain a fixed rhombus in the centre, J. Combin. Theory Ser. A (to appear), math/9906102.

    Google Scholar 

  6. M. Fulmek and C. Krattenthaler, The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, I, Ann. Combin. 2 19–40, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Fulmek and C. Krattenthaler, The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II, Europ. J. Combin. 21 601–640, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics And Its Applications 35, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  9. H. Helfgott and I. M. Gessel, Exact enumeration of tilings of diamonds and hexagons with defects, Electron. J. Combin. 6(1), #R16, 26 pp, 1999.

    MathSciNet  Google Scholar 

  10. K. Johansson, Nonintersecting paths, random tilings and random matrices, preprint, math/0011250.

    Google Scholar 

  11. P. John, Über ein einfaches Wachstum hexagonaler Systeme und das Verhalten der Paulingschen Bindungsordnung, Wiss. Zeitschr. FSU Jena 39 192–200, 1990.

    Google Scholar 

  12. G. Kuperberg, Symmetries of plane partitions and the permanent determinant method, J. Combin. Theory Ser. A 68 115–151, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42 (“The Andrews Festschrift”), paper B42q, 67 pp, 1999.

    MathSciNet  Google Scholar 

  14. P.A. MacMahon, Combinatory Analysis, Vol. 2 Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.

    Google Scholar 

  15. P. Paule and M. Schorn, A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, J. Symbol. Comp. 20 673–698, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. PetkovŠek, H. Wilf and D. Zeilberger, A=B, A. K. Peters, Wellesley, 1996.

    Google Scholar 

  17. J. Propp, Twenty open problems on enumeration of matchings, manuscript, 1996, math/9801060.

    Google Scholar 

  18. J. Propp, Enumeration of matchings: Problems and progress, in: “New Perspectives in Algebraic Combinatorics”, L. Billera, A. Bjömer, C. Greene, R. Simion, and R.P. Stanley, eds., Mathematical Sciences Research Institute Publications, Vol. 38, Cambridge University Press, 255–291, 1999.

    Google Scholar 

  19. L.J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.

    MATH  Google Scholar 

  20. P. Verbaeten, Rekursiebetrekkingen voor lineaire hypergeometrische funkties, Proefschrift voor het doctoraat in de toegepaste wetenschapen, Katholieke Universiteit te Leuven, Heverlee, Belgium, 1976.

    Google Scholar 

  21. K. Wegschaider, Computer generated proofs of binomial multi-sum identities, diploma thesis, Johannes Kepler University, Linz, Austria, 1997; available from http://www.risc.uni-linz.ac.at/research/combinat/risc/

    Google Scholar 

  22. H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math. 108 575–633, 1992.

    Article  MathSciNet  Google Scholar 

  23. D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80 207–211, 1990.

    Google Scholar 

  24. D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 195–204, 1991.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Krattenthalert, C. (2002). A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixed Rhombus. In: Agarwal, A.K., Berndt, B.C., Krattenthaler, C.F., Mullen, G.L., Ramachandra, K., Waldschmidt, M. (eds) Number Theory and Discrete Mathematics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8223-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8223-1_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9481-4

  • Online ISBN: 978-3-0348-8223-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics