Random Planar Lattices and Integrated SuperBrownian Excursion

  • Philippe Chassaing
  • Gilles Schaeffer
Conference paper
Part of the Trends in Mathematics book series (TM)


In this extended abstract, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius rn of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r = R - L of the support of the one-dimensional ISE, or precisely:
$$ n^{ - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} r_n \xrightarrow{{law}} (8/9)^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} r. $$

More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero.


Root Vertex Dyck Path Label Distribution Incipient Infinite Cluster Maximal Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Aldous. Tree-based models for random distribution of mass. J. Statist. Phys., 73(3-4):625-641,1993. MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J. Ambjørn, B. Durhuus and T. Jónsson. Quantum gravity, a statistical field theory approach. Cambridge Monographs on Mathematical Physics, 1997. Google Scholar
  3. [3]
    J. Ambjørn and Y. Watabiki, Scaling in Quantum Gravity. Nucl. Phys. B, 445:129-144,1995.CrossRefGoogle Scholar
  4. [4]
    D. Arquès. Les hypercartes planaires sont des arbres très bien étiquetés. Discrete Math., 58:11-24, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C. Banderier, P. Flajolet, G. Schaeffer and M. Soria. Random Maps, Coalescing Saddles, Singularity Analysis, and Airy Phenomena. Random Struct. & Algorithms, 19:194-246, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    E. A. Bender, K. J. Compton and L. B. Richmond. 0-1 laws for maps. Random Struct. & Algorithms, 14:215-237, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    E. Brezin, C. Itzykson, G. Parisi and J.-B. Zuber. Planar Diagrams. Comm. Math. Phys., 59:35-47, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    C. Borgs, J. Chayes, R. van der Hofstad and G. Slade. Mean-field lattice trees. On combinatorics and statistical mechanics. Ann. Comb., 3(2-4):205-221, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    R. Cori and B. Vauquelin. Planar maps are well labeled trees Canad. J. Math.,33(5):1023-1042, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Dembo and O. Zeitouni. Large deviations for random distribution of mass. Random discrete structures (Minneapolis, MN, 1993),45-53, IMA Vol. Math. Appl., 76, Springer, New York, 1996.Google Scholar
  11. [11]
    E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys., 193(1):69-104,1998.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Z. Gao and N. C. Wormald. The Distribution of the Maximum Vertex Degree in Random Planar Maps. J. Combinat. Theory, Ser. A, 89:201-230,2000.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    D. Gross, T. Piran and S. Weinberg. Two dimensional quantum gravity and random surfaces. World Scientific, 1992.Google Scholar
  14. [14]
    T. Hara and G. Slade. The incipient infinite cluster in high-dimensional percolations. Electron. Res. Announc. Amer. Math. Soc., 4:48-55, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    B. Jacquard. Cartes et Arbres : énumération, génération et dessins. PhD thesis, École Poly technique , 1997, Palaiseau.Google Scholar
  16. [16]
    S. Jain and S. D. Mathur. World sheet geometry and baby universes in 2-d quantum gravity. Phys. Lett. B, 305:208-213, 1993.MathSciNetCrossRefGoogle Scholar
  17. [17]
    W. D. Kaigh. An invariance principle for random walk conditioned by a late return to zero. Ann. Prob., 4(1):115-121, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1999.CrossRefGoogle Scholar
  19. [19]
    M. Marcus and G. Schaeffer. Une bijection simple pour les cartes orientables. Manuscript, 10pp, july 2001.Google Scholar
  20. [20]
    M. Marcus and B. Vauquelin. Un codage des cartes de genre quelconque. In B. Leclerc and J.Y. Thibon, ed., Séries formelles et combinatoire algébrique, 7ème colloque, 399-416. Université de Marne-la-Vallée, 1995. Google Scholar
  21. [21]
    J.-F. Marckert and A. Mokkadem. States spaces of the snake and of its tour - Convergence of the discrete snake. Manuscript, 2002.Google Scholar
  22. [22]
    J. Pitman. Enumerations of Trees and Forests related to Branching Processes and Random Walks. Tech. Report 482, Dept. Statistics, University of California at Berkeley.Google Scholar
  23. [23]
    L. B. Richmond and N. C. Wormald. Almost all maps are asymmetric. J. of Gombinat. Theory, Ser. B, 63(1):1- 7, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    G. Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires. PhD. thesis, Université Bordeaux I, 1998, Bordeaux.Google Scholar
  25. [25]
    L. Serlet. A large deviation principle for the Brownian snake, Stochastic Process. Appl., 67(1):101-115, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    R. Stanley. Enumerative Combinatorics, volume II, Cambridge Series in Advanced Mathematics, 1999.Google Scholar
  27. [27]
    W.T. Thtte. A census of planar maps. Canad. J. Math., 15:249- 271, 1963.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Y. Watabiki. Construction of noncritical string field theory by transfert matrix formalism in dynamical triangulations. Nucl. Phys. B, 441:119- 166, 1995.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Philippe Chassaing
    • 1
  • Gilles Schaeffer
    • 2
  1. 1.Université Henri PoincaréVandoeuvreFrance
  2. 2.CNRS-LORIAVandoeuvreFrance

Personalised recommendations