Skip to main content

How Random Are Random Walks?

  • Conference paper
  • 401 Accesses

Part of the book series: Progress in Probability ((PRPR,volume 52))

Abstract

Steps of random walks in the real world are not independent, but, rather, depend on hidden variables acting in a complicated manner that is not feasible to deterministic analysis. Proposed is a continuous scale of random walks with interdependent steps, which is calibrated by combinatorial measurements. In the limit, modeling continuous time, this scale of random walks becomes a scale of chaos processes, which is calibrated by tail-probability estimates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Bachelier, Theory of Speculation, in P. H. Cootner, editor, The Random Character of Stock Market Prices, The MIT Press, 1969.

    Google Scholar 

  2. P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, 1968.

    MATH  Google Scholar 

  3. R. C. Blei, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble), 29 (1979), 79–105.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. C. Blei, Combinatorial dimension and certain norms in harmonic analysis, Amer. J. Math., 106 (1984), 847–887.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. C. Blei, a-Chaos, J. Funct. Anal., 81 (1988), 279–296.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. C. Blei, Analysis in Integer and Fractional Dimensions, Cambridge University Press, 2001.

    Book  MATH  Google Scholar 

  7. R. C. Blei and T. W. Körner, Combinatorial dimension and random sets, Israel J. Math., 47 (1984), 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. C. Blei and J.-P. Kahane, A computation of the Littlewood exponent of stochastic processes, Math. Proc. Camb. Phil. Soc., 103 (1988), 367–370.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. C. Blei, Y. Peres and J. H. Schmerl, Fractional products of sets, Random Designs and Algorithms, 6 (1995), 113–119.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Brown, On the existence of active molecules in organic and inorganic bodies, Phil. Mag. (New Series), 4 (1828), 161–173.

    Article  Google Scholar 

  11. A. Einstein, Investigations on the Theory of Brownian Movement, edited by R. Fürth, translated by A. D. Cowper, Dover Publications, Inc., 1956.

    Google Scholar 

  12. H. Enderton, A Mathematical Introduction to Logic, Academic Press, New York and London, 1972.

    MATH  Google Scholar 

  13. M. Kac, Random walk and the theory of Brownian motion, Amer. Math. Month., 54 (1947), 369–391.

    Article  MATH  Google Scholar 

  14. S. Kakutani, Brownian motion and duality of locally compact Abelian groups, Proceedings of the International Congress of Mathematicians, 1950, 456–457.

    Google Scholar 

  15. S. Kakutani, Spectral analysis of stationary Gaussian processes, Proceedings of the Fourth Berkeley Symposium, vol. II, University of California Press, 1961.

    Google Scholar 

  16. J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford, 1 (1930), 164–174.

    Article  Google Scholar 

  17. D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 1995.

    MATH  Google Scholar 

  18. J. Perrin, Mouvement brownien et réalité moléculaire, Ann. Chimie et Physique, 8e série, 18 (1909), 1–114.

    MathSciNet  Google Scholar 

  19. N. Wiener, The average of an analytic functional and the Brownian movement, Proc. Nat. Acad. Sci., 7 (1921), 294–298.

    Article  Google Scholar 

  20. N. Wiener, Differential space, J. Math and Physics, 2 (1923), 131–174.

    Google Scholar 

  21. N. Wiener, The homogeneous chaos, Amer. J. Math., 60 (1938), 897–936.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Blei, R. (2002). How Random Are Random Walks?. In: Dalang, R.C., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications III. Progress in Probability, vol 52. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8209-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8209-5_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9474-6

  • Online ISBN: 978-3-0348-8209-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics