Skip to main content

An Algorithm for Optimal Bandwidth Selection for Smooth Nonparametric Quantile Estimation

  • Conference paper
Statistical Data Analysis Based on the L1-Norm and Related Methods

Abstract

We address the problem of bandwidth selection for kernel estimates of the marginal probability distribution of a time series Y i , i = 1,2, …, n that is a transformation G (Z i n i of a stationary zero mean Gaussian process Z i . Here G is an unknown function. Within this setup, it is known that if the underlying Gaussian process Z i has long-memory correlations, then the optimal bandwith depends on the long-memory parameter δ (0 ≤; δ < 1/2), as well as several unknown parameters related to the function G and the underlying Gaussian process Z i . Clearly, even with short-memory correlations, the optimal bandwidth will continue to depend on various unknown quantities. The aim of this paper is to propose a bandwidth selection procedure that estimates various relevant functions directly from the data to be used in an iterative procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abberger, K. Nichtparametrische Schätzung bedingter Quantile in Zeitreihen. Konstanzer Dissertation, Hartung-Gorre, Konstanz, 530, (1996).

    Google Scholar 

  2. Abberger, K. Quantile smoothing in financial time series. Statistical Papers, (1997), 38, 125–148.

    Article  MATH  MathSciNet  Google Scholar 

  3. Beran, J. Statistics for long-memory processes. Chapman and Hall, New York, (1994).

    MATH  Google Scholar 

  4. Beran, J. & Feng, Y. SEMIFAR models — a semiparametric framework for modelling trends, long-range dependence and nonstationarity. Computational Statistics & Data Analysis, (2002), in press.

    Google Scholar 

  5. Beran, J. & Ocker, D. SEMIFAR forecasts, with applications to foreign exchange rates. Journal of Statistical Planning and Inference, (1999), 80, 137–153.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cox, D.R. Long-range dependence: A review. Statistics: An Appraisal. Proceedings 50th Anniversary Conference. H.A. David, H.T. David (eds.). The Iowa State University Press, (1984), 55-74.

    Google Scholar 

  7. Csörgő, S. & Mielniczuk, J. Density estimation under long-range dependence. The Annals of Statistics, 23, (1995), 990–999.

    Article  MathSciNet  Google Scholar 

  8. Draghicescu, D. & Ghosh, S. Smooth nonparametric quantiles. Proceedings of the Second International Colloquium on Mathematics in Engineering and Numerical Physics, April 22-27, 2002, Bucharest, Romania, Submitted, (2002).

    Google Scholar 

  9. Engel, J., Herrmann, E., Gasser, T. An Iterative Bandwidth Selector for Kernel Estimation of Densities and Their Derivatives Journal of Nonparametric Statistics, 4, (1994), 21–34.

    Article  MATH  MathSciNet  Google Scholar 

  10. Eubank, R. Spline smoothing and nonparametric regression, Marcel Dekker, New York. (1988).

    MATH  Google Scholar 

  11. Gasser, T., Mueller, H. Estimating Regression Functions and Their Derivatives By the Kernel Method, Scandinavian Journal of Statistics, 11, (1984), 171–185.

    MATH  Google Scholar 

  12. Ghosh, S., Beran, J. & Innes, J. Nonparametric conditional quantile estimation in the presence of long memory. Student, 2, (1997), 109–117.

    Google Scholar 

  13. Ghosh, S. & Draghicescu, D. Predicting the distribution function for long-memory processes. International Journal of Forecasting, (to appear)

    Google Scholar 

  14. Granger, C.W.J. & Joyeux, R. An Introduction to Long-Memory Time Series Models and Fractional Differencing. Journal of Time Series Analysis, 1, (1980), 15–29.

    Article  MATH  MathSciNet  Google Scholar 

  15. Herrmann, E., Gasser, T. Kneip, A. Choice of Bandwidth for Kernel Regression When Residuals Are Correlated, Biometrika, 79, (1992), 783–795.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hosking, J.R.M. Fractional differencing, Biometrika, 68, 165–176, (1981).

    Article  MATH  MathSciNet  Google Scholar 

  17. Taqqu, M. Hosking, J.R.M., Biometrika, 68, 165–176, (1981).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Ghosh, S., Florea-Draghicescu, D. (2002). An Algorithm for Optimal Bandwidth Selection for Smooth Nonparametric Quantile Estimation. In: Dodge, Y. (eds) Statistical Data Analysis Based on the L1-Norm and Related Methods. Statistics for Industry and Technology. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8201-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8201-9_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9472-2

  • Online ISBN: 978-3-0348-8201-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics