Skip to main content

Simulation of Unstable Fault Slip in Granite Using a Bonded-particle Model

  • Chapter
Book cover The Mechanism of Induced Seismicity

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

A bonded-particle model is used to simulate shear-type microseismic events induced by tunnel excavation in granite. The model represents a volume of granite by an assembly of 50,000 individual particles bonded together at points of contact. A plane of weakness is included in the model and this plane is subjected to increasing shear load while the normal load across the plane is held constant. As shear stress in the model increases, bonds begin to break and small acoustic emissions (AE) result. After enough bonds have broken, macro-slip occurs across the large portions of the fault in an unstable manner. Since the model is run dynamically, seismic source information can be calculated for the simulated AE and macro-slip events. This information is compared with actual results obtained from seismic monitoring around an underground excavation. Although the modelled events exhibit larger magnitudes than the actual recorded events, there are many similarities between the model and the actual results, namely the presence of foreshocks before the macro-slip events and the patterns of energy release during loading. In particular, the model provides the ability to examine the complexity of the slip events in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonellini, M. A. and Pollard, D. D. (1995), Distinct Element Modeling of Deformation Bands in Sandstone, J. Struct. Geology 17, 1165–1182.

    Article  ADS  Google Scholar 

  • Baker, C. and Young, R. P. (1997), Evidence for Extensile Crack Initiation in Point Source Time-dependent Moment Tensor Solutions, Bull. Seismol. Soc. Am. 87, 1442–1453.

    Google Scholar 

  • Brace, W. F. and Byerlee, J. D. (1966), Stick Slip as a Mechanism for Earthquakes, Science 153, 990–992.

    Article  ADS  Google Scholar 

  • Brehm, D. J. and Braile, L. W. (1998), Intermediate-term Earthquake Prediction Using Precursory Events in the New Madrid Seismic Zone, Bull. Seismol. Soc. Am. 88, 564–580.

    Google Scholar 

  • Collins, D. S. and Young, R. P. (2000), Lithological Controls on Seismicity in Granitic Rocks, Bull. Seismol. Soc. Am. 90, 709–723.

    Article  Google Scholar 

  • Collins, D. S. and Young, R. P., Acoustic emission and microseismic data from the excavation phase of the tunnel sealing experiment. Report to Atomic Energy of Canada Limited, TSX-RPO40 (Keele University, 1998).

    Google Scholar 

  • Collins, D. S., Pettitt, W. S., and Young, R. P. (2002), High Resolution Mechanics of a Microearthquake Sequence, Pure appl. geophys., this issue.

    Google Scholar 

  • Cundall, P.A., Numerical experiments on rough joints in shear using a bonded particle model. In Aspects of Tectonic Faulting (eds. Lehner, F. K. and Urai, J. L.) (Springer-Verlag, Berlin 1999) pp. 1–10.

    Google Scholar 

  • Cundall, P. A. and Strack, O. (1979), A Discrete Element Model for Granular Assemblies,Geotechnique 29, 47–65.

    Article  Google Scholar 

  • Das, S. and Scholz, C. H. (1981), Theory of Time-dependent Rupture in the Earth, J. Geophys. Res. 86, 6039–6051.

    Article  ADS  Google Scholar 

  • Feustel, A. J. (1995), Seismic Attenuation in Underground Mines: Measurement Techniques and Applications to Site Characterization, Ph.D. Thesis, Queen’s University, Kingston, Ontario, Canada.

    Google Scholar 

  • Harris, R. A. (1998), Introduction to Special Session: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard, J. Geophys. Res. 103, 24, 347–24,358.

    Google Scholar 

  • Hazzard, J. F. and Young, R. P. (2000), Simulating Acoustic Emissions in Bonded-Particle Models of Rock, Int. J. Rock Mech. Min. Sci. 37, 867–872.

    Article  Google Scholar 

  • Hazzard, J. F., Young, R. P., and Maxwell, S. C. (2000), Micromechanical modelling of cracking and failure in brittle rocks, J. Geophys. Res. 105, 16,683–16,697.

    Google Scholar 

  • Itasca Consulting Group, Particle Flow Code in 2 Dimensions (Itasca Consulting Group, Minneapolis, 1999).

    Google Scholar 

  • Lockner, D. A. (1998), A Generalized Law for Brittle Deformation of Westerly Granite, J. Geophys. Res. 103, 5107–5123.

    Article  ADS  Google Scholar 

  • Lockner, D. A. (1993), The Role of Acoustic Emission in the Study of Rock Fracture, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 30, 883–899.

    Article  Google Scholar 

  • McGarr, A. (1994), Some Comparisons between Mining-Induced and Laboratory Earthquakes, Pure Appl. Geophys. 142, 467–489.

    Article  ADS  Google Scholar 

  • Mora, P. and Place, D. (1998), Numerical Simulation of Earthquake Faults with Gouge: Toward a Comprehensive Explanation for the Heat Flow Paradox, J. Geophys. Res. 103, 21,067–21,089.

    Google Scholar 

  • Morgan, J. and Boettcher, M. S. (1999), Numerical Simulations of Granular Shear Zones Using the Distinct Element Method 1. Shear Zone Kinematics and the micromechanics of localization, J. Geophys. Res. 104, 2703–2719.

    Article  ADS  Google Scholar 

  • Pettitt, W. S. (1998), Acoustic Emission Source Studies of Microcracking in Rock, Ph.D. Thesis, Keele University, Staffordshire, UK.

    Google Scholar 

  • Potyondy, D. O. and Cundall, P. A. (1998), Modeling notch formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles, Int. J. Rock Mech. Min. Sci., Special Issue (Proceedings of NARMS ‘88, 3rd North American Rock Mechanics Symposium, Cancun, Mexico, June/July 1998), 35, Paper no. 067, 1998.

    Google Scholar 

  • Potyondy, D. O. and Cundall, P. A. (1999), Modeling of notch formation in the URL mine-by tunnel: Phase IV — Enhancements to the PFC model of rock, Report to Atomic Energy of Canada Ltd. by Itasca Consulting Group, Minneapolis, issued as Ontario Hydro report No. 06819-REP-01200–10002-R00.

    Google Scholar 

  • Potyondy, D. O., Cundall, P. A., and Lee, C., Modeling of rock using bonded assemblies of circular particles. In Second North American Rock Mechanics Symposium — NARMS ‘86 (ed. Aubertin, M.) (Balkema, Rotterdam, 1996) pp. 1934–1944.

    Google Scholar 

  • Schmidtke, R. H. and Lajtai, E. Z. (1985), The Long-term Strength of Lac du Bonnet Granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 22(6), 461–465.

    Article  Google Scholar 

  • Scriolz, C. H., The Mechanics of Earthquakes and Faulting (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  • Scott, D. R. (1996), Seismicity and Stress Rotation in a Granular Model of the Brittle Crust, Nature 381, 592–595.

    Article  ADS  Google Scholar 

  • Tapponnier, P. and Brace, W. F. (1976), Development of Stress-induced Microcracks in Westerly Granite, Int. J. Rock Mech. Min. Sci. Abstr. 13, 103–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Hazzard, J.F., Collins, D.S., Pettitt, W.S., Young, R.P. (2002). Simulation of Unstable Fault Slip in Granite Using a Bonded-particle Model. In: Trifu, C.I. (eds) The Mechanism of Induced Seismicity. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8179-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8179-1_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6653-7

  • Online ISBN: 978-3-0348-8179-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics