Skip to main content

Wave Phenomena in a Relativistic Gas

  • Chapter
  • 1380 Accesses

Part of the book series: Progress in Mathematical Physics ((PMP,volume 22))

Abstract

As is the case for other media, the propagation of disturbances plays an important role in a gas. When the gas is sufficiently rarefied, the variety of regimes and the unusual form of the basic equation make their study rather different from the corresponding one in continuum mechanics. Yet, the classification of these phenomena is not so different, and the term wave is applied indifferently to completely different situations. The common feature seems to be the propagation of a peculiar aspect, such as a sharp change or an oscillating behavior, which travels between different parts of the medium. The phase speed and the possible attenuation coefficient of the waves are typical objects of study, since they are general features which can help us in understanding many qualitative features of more complicated situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Anderson, A. C. Payne Jr., The relativistic Burnett equations and sound propagation,Physica 85A, 261–286 (1976).

    ADS  Google Scholar 

  2. G. Boillat, Wave velocities in relativistic extended thermodynamics, in Kinetic theory and extended thermodynamics pp. 55–60, eds. I. Müller and T. Ruggeri, (Pitagora, Bologna, 1987).

    Google Scholar 

  3. G. Boillat, T. Ruggeri, Maximum wave velocity in the moments system of a relativistic gas, Continuum Mech. Thermodyn. 11, 107–111 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. C. Cercignani, Bifurcation problems in fluid mechanics, Meccanica 5, 7–16 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Cercignani, Speed of propagation of infinitesimal disturbances in a relativistic gas, Phys. Rev. Lett. 50, 1122–1124 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Cercignani and A. Majorana, Propagation of infinitesimal disturbances in a gas according to a relativistic model, Meccanica 19, 175–181 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Cercignani and A. Majorana, Analysis of thermal, sound and shear waves according to a relativistic kinetic model, Phys. Fluids 28, 1673–1683 (1985).

    Article  ADS  MATH  Google Scholar 

  8. C. Cercignani, Solutions of a linearized kinetic model for an ultrarelativistic gas, Jour. Stat. Phys. 42, 601–620 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Cercignani and A. Majorana, Structure of shock waves in relativistic simple gases, Phys. Fluids 31, 1064–1068 (1988).

    Article  ADS  MATH  Google Scholar 

  10. C. Cercignani, Propagation phenomena in classical and relativistic rarefied gases, Transp. Theory Stat. Phys. 29, 607–614 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Cercignani, Rarefied gas dynamics, (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  12. C. Cercignani and G. M. Kremer, Dispersion and absorption of plane harmonic waves in a relativistic gas, Continuum Mech. Thermodyn. 13, 171–182 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D. Gilbarg and D. Paolucci, The structure of shock waves in the continuum theory of fluids, J. Rational Mech. Anal. 2, 617–642 (1953).

    MathSciNet  MATH  Google Scholar 

  14. H. Grad, Singular and non-uniform limits of solutions of the Boltzmann equation in Transport Theory pp. 269–308, eds. R. Bellman, G. Birkhoff and I. Abu-Shumays (American Mathematical Society, Providence, 1969).

    Google Scholar 

  15. M. Greenspan, Translational dispersion in gases, in Dispersion and absorption of sound by molecular processes pp. 73–100, ed. D. Sette (Academic Press, New York, 1963).

    Google Scholar 

  16. S. R. de Groot, W. A. van Leeuwen, Ch. G. van Weert, Relativistic kinetic theory (North-Holland, Amsterdam, 1980).

    Google Scholar 

  17. J. Guichelaar, W. A. van Leeuwen and S. R. de Groot, On the relativistic kinetic gas theory VII. The propagation and absorption of sound, Physica 59, 97–108 (1972).

    Article  ADS  Google Scholar 

  18. W. Israel, J. M. Stewart, Transient relativistic thermodynamics and kinetic theory, Ann. Phys. 118, 341–372 (1979).

    MathSciNet  ADS  Google Scholar 

  19. P. A. Koch, Relativistic shock structure, Phys. Rev. 140 A, 1161–1165 (1965).

    Google Scholar 

  20. M. Kranyš, Phase and signal velocities of waves in dissipative media. Special relativistic theory, Arch. Rational Mech. Anal. 48, 274–301 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. Majorana, Analytical solutions of hte Rankine—Hugoniot relations for a relativistic simple gas, Nuovo Cimento 98 B, 111–118 (1987).

    Article  MathSciNet  Google Scholar 

  22. A. Majorana, O. Muscato, Shock structure in an ultrarelativistic gas, Meccanica 25, 77–82 (1990).

    Article  MATH  Google Scholar 

  23. H. Mott-Smith, The solution of the Boltzmann equation for a shock wave, Phys. Rev. 82, 885–892 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. I. Müller, Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Media, Dissertation RWTH (Aachen, 1966).

    Google Scholar 

  25. L. Seccia, A. Strumia, Wave propagation in relativistic extended thermodynamics, Continuum Mech. Thermodyn. 2, 151–161 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Sone, On a new kind of boundary layer over a convex solid boundary in rarefied gas, Kyoto University Research Report 24 (1972).

    Google Scholar 

  27. J. L. Synge, The relativistic gas (North-Holland, Amsterdam, 1957).

    MATH  Google Scholar 

  28. I. E. Tamm, On the thickness of shock waves of large intensity, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 239–249 (1965) (in Russian).

    Google Scholar 

  29. A. H. Taub, Relativistic Rankine—Hugoniot equations, Phys. Rev. 74, 328–334 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. S. Weinberg, Entropy generation and the survival of protogalaxies in the expanding universe, Ap. J. 168, 175–194 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Birkhäuser Verlag

About this chapter

Cite this chapter

Cercignani, C., Kremer, G.M. (2002). Wave Phenomena in a Relativistic Gas. In: The Relativistic Boltzmann Equation: Theory and Applications. Progress in Mathematical Physics, vol 22. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8165-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8165-4_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9463-0

  • Online ISBN: 978-3-0348-8165-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics