Hinton and Shaw’s Extension of Weyl’s M (λ) Theory to Systems

  • Allan M. Krall
Part of the Operator Theory: Advances and Applications book series (OT, volume 133)


D. B. Hinton and J. K. Shaw have developed an extension of the Weyl theory which is a bit different from that of Chapter VI, and which proves to be ultimately much more useful in deriving the spectral resolution for self-adjoint systems.


Singular Point Hamiltonian System Limit Circle Weyl Theory Defect Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. V. Atkinson, Discrete and Continuous Boundary Value Problems, Academic Press, New York, 1964.Google Scholar
  2. [2]
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, N. Y., 1955.zbMATHGoogle Scholar
  3. [3]
    W. N. Everitt, Integrable-square solutions of ordinary differential equations, Quar. J. Math., Oxford (2) 10 (1959), pp. 145–155.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    —, Integrable-square solutions of ordinary differential equations II, Quar. J. Math., Oxford (2) 13 (1962) pp. 217–220.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    —, A note on the self-adjoint domains of second-order differential equations, Quar. J. Math., Oxford (2), 14, (1963), pp. 41–45.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    —, Integrable-square solutions of ordinary differential equations III, Quar. J. Math., Oxford (2) 14 (1963), pp. 170–180.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    —, Fourth order singular differential equations, Math. Ann. 149 (1963), pp. 320–340.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    —, Singular differential equations I: The even order case, Math. Ann. 156 (1964), pp. 9–24.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    —, Singular differential equations II: Some self-adjoint even order cases, Quar. J. Math, Oxford 18 (1967), pp. 13–32.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    —, Legendre polynomials and singular differential operators, Lecture Notes in Mathematics, Vol. 827, Springer-Verlag, New York, (1980), pp. 83–106.Google Scholar
  11. [11]
    W. N. Everitt and V. K. Kumar, On the Titchmarsh-Weyl theory of ordinary symmetric differential expressions, I and II, Arch v. Wisk. 3 (1976), pp. 1–48, 109-145.Google Scholar
  12. [12]
    D. B. Hinton and J. K. Shaw, On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems, J. Diff. Eq. 40 (1981), pp. 316–342.Google Scholar
  13. [13]
    J. K. Shaw —, Titchmarsh-Weyl theory for Hamiltonian systems, Spectral Theory Diff. Ops, North Holland, I. W. Knowles and R. E Lewis, eds., 1981, pp. 219–230.Google Scholar
  14. [14]
    J. K. Shaw —, On the spectrum of a singular Hamiltonian system, Quaes. Math. 5 (1982), pp. 29–81.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J. K. Shaw —, Titchmarsh’s λ-dependent boundary conditions for Hamiltonian systems, Lect. Notes in Math. (Springer-Verlag), 964 (1982), pp. 318–326.CrossRefGoogle Scholar
  16. [16]
    J. K. Shaw —, Well-posed boundary value problems for Hamiltonian systems of limit point or limit circle type, Lect. Notes in Math. (Springer-Verlag), 964 (1982), pp. 614–631.MathSciNetCrossRefGoogle Scholar
  17. [17]
    J. K. Shaw —, Hamiltonian systems of limit point or limit circle type with both ends singular, J. Diff. Eq. 50 (1983), pp. 444–464.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    J. K. Shaw —, Parameterization of the M(λ) function for a Hamiltonian system of limit circle type, Proc. Roy. Soc. Edin. 93 (1983), pp. 349–360.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    J. K. Shaw —, On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal. 15 (1984), pp. 272–286.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    K. Kodaira On ordinary differential equations of any even order and the corresponding eigenfunction expansions, Amer. J. Math. 72 (1950), pp. 502–544.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    A. M. Krall, B. D. Hinton and J. K. Shaw, Boundary conditions for differential systems in intermediate situations, Proc. Conf. Diff. Eq. Alabama-Birmingham (1983), pp. 301–305.Google Scholar
  22. [22]
    L. L. Littlejohn and A. M. Krall, Orthogonal polynomials and higher order singular Sturm-Liouville systems, Acta. Applicandae Math. 17 (1989), pp. 99–170.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    A. M. Krall —, Orthogonal polynomials and singular Sturm-Liouville systems, II.Google Scholar
  24. [24]
    H. D. Niessen, Singuläre S-hermitesche Rand-Eigenwert Probleme, Manuscripta Math. 3 (1970), pp. 35–68.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    —, Zum verallgemeinerten zweiten Weylschen Satz, Archiv der Math. 22 (1971), pp. 648–656.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    —, Greensche Matrix und die Formel von Titchmarch-Kodaira für singuläre S-hermitesche Eigenwert Probleme, J. f. d. reine ang. Math. 261 (1972), pp. 164–193.MathSciNetGoogle Scholar
  27. [27]
    E. C. Titchmarsh, Eigenfunction Expansions, Oxford Univ. Press, Oxford, 1962.zbMATHGoogle Scholar
  28. [28]
    H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), pp. 220–269.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Allan M. Krall
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations